Tempered stable models in finance : theory and applications

[1]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[2]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[3]  Reiichiro Kawai An importance sampling method based on the density transformation of Lévy processes , 2006, Monte Carlo Methods Appl..

[4]  J. Rosínski Tempering stable processes , 2007 .

[5]  Svetlozar T. Rachev,et al.  Fat-Tailed and Skewed Asset Return Distributions : Implications for Risk Management, Portfolio Selection, and Option Pricing , 2005 .

[6]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[7]  Gurdip Bakshi,et al.  Pricing and hedging long-term options , 2000 .

[8]  G. Marsaglia,et al.  Evaluating the Anderson-Darling Distribution , 2004 .

[9]  E. Ghysels,et al.  A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation , 2000 .

[10]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[11]  Walter Schachermayer,et al.  The Mathematics of Arbitrage , 2006 .

[12]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[13]  S. Asmussen,et al.  Approximations of small jumps of Lévy processes with a view towards simulation , 2001, Journal of Applied Probability.

[14]  S. Poon,et al.  Financial Modeling Under Non-Gaussian Distributions , 2006 .

[15]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[16]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[17]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .

[18]  S. Rachev,et al.  A Modified Tempered Stable Distribution with Volatility Clustering , 2008 .

[19]  S. Rachev,et al.  A New Tempered Stable Distribution and Its Application to Finance , 2009 .

[20]  E. Platen,et al.  Subordinated Market Index Models: A Comparison , 1997 .

[21]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[22]  J. Duan,et al.  Série Scientifique Scientific Series Empirical Martingale Simulation for Asset Prices Empirical Martingale Simulation for Asset Prices , 2022 .

[23]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[24]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[25]  Svetlozar T. Rachev,et al.  A GARCH option pricing model with alpha-stable innovations , 2005, Eur. J. Oper. Res..

[26]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[27]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[28]  Giovanni Barone-Adesi,et al.  VaR without correlations for portfolios of derivative securities , 1999 .

[29]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[30]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[31]  Mikael Signahl On Error Rates in Normal Approximations and Simulation Schemes for Lévy Processes , 2003 .

[32]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Svetlozar T. Rachev,et al.  Option pricing for a logstable asset price model , 1999 .

[34]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[35]  Young Shin Kim,et al.  The relative entropy in CGMY processes and its applications to finance , 2007, Math. Methods Oper. Res..

[36]  Yoshio Miyahara,et al.  The minimal entropy martingale measures for geometric Lévy processes , 2003, Finance Stochastics.

[37]  Svetlozar T. Rachev,et al.  Tempered stable and tempered infinitely divisible GARCH models , 2010 .

[38]  Peter Christoffersen,et al.  Série Scientifique Scientific Series Option Valuation with Conditional Skewness Option Valuation with Conditional Skewness , 2022 .

[39]  Robert J. Elliott,et al.  Mathematics of Financial Markets , 1999 .

[40]  S. Rachev,et al.  Tempered stable distributions and processes in finance: numerical analysis , 2010 .

[41]  C. Schwab,et al.  Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .

[42]  Marc Yor,et al.  CGMY and Meixner Subordinators are Absolutely Continuous with respect to One Sided Stable Subordinators. , 2006 .

[43]  P. Lee,et al.  14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .

[44]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[45]  B. Rajput,et al.  Spectral representations of infinitely divisible processes , 1989 .

[46]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[47]  Peter H. Ritchken,et al.  Pricing Options under Generalized GARCH and Stochastic Volatility Processes , 1999 .

[48]  C. Houdré,et al.  On layered stable processes , 2005, math/0503742.

[49]  B. Dumas,et al.  Implied volatility functions: empirical tests , 1996, IEEE Conference on Computational Intelligence for Financial Engineering & Economics.

[50]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[51]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[52]  R. Engle,et al.  A GARCH Option Pricing Model with Filtered Historical Simulation , 2008 .

[53]  P. Protter Stochastic integration and differential equations , 1990 .

[54]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[55]  H. M. Yung,et al.  An empirical investigation of the GARCH option pricing model: Hedging performance , 2003 .

[56]  Svetlozar T. Rachev,et al.  Financial market models with Lévy processes and time-varying volatility. , 2008 .

[57]  G. Marsaglia,et al.  Evaluating Kolmogorov's distribution , 2003 .

[58]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[59]  S. Rachev,et al.  Subordinated Stock Price Models: Heavy Tails and Long-Range Dependence in the High-frequency Deutsche Bank Price Record , 2000 .

[60]  V. Zolotarev One-dimensional stable distributions , 1986 .

[61]  Peter H. Ritchken,et al.  An empirical comparison of GARCH option pricing models , 2006 .

[62]  Kris Jacobs,et al.  Which GARCH Model for Option Valuation? , 2004, Manag. Sci..

[63]  Peter Tankov,et al.  Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes , 2007 .

[64]  R. Weron Correction to: "On the Chambers–Mallows–Stuck Method for Simulating Skewed Stable Random Variables" , 1996 .

[65]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[66]  Marc Yor,et al.  Stochastic volatility, jumps and hidden time changes , 2002, Finance Stochastics.

[67]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[68]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[69]  Stefan Tappe,et al.  Bilateral gamma distributions and processes in financial mathematics , 2008, 1907.09857.

[70]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[71]  I. Monroe Processes that can be Embedded in Brownian Motion , 1978 .

[72]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[73]  Marc Yor,et al.  Time Changes for Lévy Processes , 2001 .

[74]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[75]  Novikov,et al.  Infinitely divisible distributions in turbulence. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[77]  J. Obłój The Skorokhod embedding problem and its offspring , 2004, math/0401114.

[78]  Svetlozar T. Rachev,et al.  Delta hedging strategies comparison , 2008, Eur. J. Oper. Res..

[79]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[80]  J. Rosínski Series Representations of Lévy Processes from the Perspective of Point Processes , 2001 .

[81]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[82]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[83]  C. Houdré,et al.  On fractional tempered stable motion , 2005, math/0503741.

[84]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[85]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[86]  Svetlozar T. Rachev,et al.  The Modifled Tempered Stable Distribution, GARCH Models and Option Pricing , 2008 .

[87]  Svetlozar T. Rachev,et al.  Smoothly truncated stable distributions, GARCH-models, and option pricing , 2009, Math. Methods Oper. Res..

[88]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[89]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[90]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[91]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[92]  Dimension Free and Infinite Variance Tail Estimates on Poisson Space , 2004, math/0412346.

[93]  F. Tricomi Funzioni ipergeometriche confluenti , 1954 .

[94]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[95]  S. Resnick Adventures in stochastic processes , 1992 .

[96]  Jin-Chuan Duan,et al.  APPROXIMATING GARCH‐JUMP MODELS, JUMP‐DIFFUSION PROCESSES, AND OPTION PRICING , 2006 .

[97]  Svetlozar T. Rachev,et al.  Financial Econometrics: From Basics to Advanced Modeling Techniques , 2006 .

[98]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[99]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[100]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[101]  Ray Kawai Contributions to Infinite Divisibility for Financial Modeling , 2004 .

[102]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[103]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .