(42355) Typhon–Echidna: Scheduling observations for binary orbit determination

Abstract We describe a strategy for scheduling astrometric observations to minimize the number required to determine the mutual orbits of binary transneptunian systems. The method is illustrated by application to Hubble Space Telescope observations of (42355) Typhon–Echidna, revealing that Typhon and Echidna orbit one another with a period of 18.971 ± 0.006 days and a semimajor axis of 1628 ± 29 km , implying a system mass of ( 9.49 ± 0.52 ) × 10 17 kg . The eccentricity of the orbit is 0.526 ± 0.015 . Combined with a radiometric size determined from Spitzer Space Telescope data and the assumption that Typhon and Echidna both have the same albedo, we estimate that their radii are 76 −16 +14 and 42 −9 +8 km , respectively. These numbers give an average bulk density of only 0.44 −0.17 +0.44 g cm −3 , consistent with very low bulk densities recently reported for two other small transneptunian binaries.

[1]  Paul J. Stomski,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[4]  D. D. Mueller,et al.  Fundamentals of Astrodynamics , 1971 .

[5]  B. Davidsson,et al.  Non-gravitational force modeling of Comet 81P/Wild 2: I. A nucleus bulk density estimate , 2006 .

[6]  A. Doressoundiram,et al.  Reopening the TNOs color controversy: Centaurs bimodality and TNOs unimodality , 2003 .

[7]  H. Boehnhardt,et al.  ESO large program on Centaurs and TNOs: visible colors—final results , 2004 .

[8]  M. Granvik,et al.  Asteroid identification at discovery , 2005 .

[9]  J. Petit,et al.  KBO binaries: how numerous were they? , 2004 .

[10]  J. Elliot,et al.  The Frequency of Binary Kuiper Belt Objects , 2006 .

[11]  Dale P. Cruikshank,et al.  Neptune and Triton , 1995 .

[12]  Richard P. Binzel,et al.  Mutual Events and Stellar Occultations , 1997 .

[13]  G. Rieke,et al.  The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36 , 2006, astro-ph/0602316.

[14]  M. Brown,et al.  The largest Kuiper belt objects , 2008 .

[15]  David J. Tholen,et al.  Pluto and Charon , 1997 .

[16]  A. D. Dubyago,et al.  The determination of orbits. , 1961 .

[17]  William H. Press,et al.  Numerical recipes in C , 2002 .

[18]  G. Bernstein,et al.  Transneptunian Orbit Computation , 2008 .

[19]  J. R. Spencer,et al.  The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur , 2007, 0704.1523.

[20]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[21]  M. Polińska,et al.  Figure of the double Asteroid 90 Antiope from adaptive optics and lightcurve observations , 2007 .

[22]  Karri Muinonen,et al.  Collision Probability for Earth-Crossing Asteroids Using Orbital Ranging , 2001 .

[23]  M. W. Buie,et al.  Orbits and Photometry of Pluto’s Satellites: Charon, S/2005 P1, and S/2005 P2 , 2005, astro-ph/0512491.

[24]  Jenni Virtanen,et al.  Time evolution of orbital uncertainties for the impactor candidate 2004 AS1 , 2006 .

[25]  Jean-Luc Margot,et al.  Binaries in the Kuiper Belt , 2007, astro-ph/0703134.

[26]  B. Davidsson,et al.  Non-gravitational force modeling of Comet 81P/Wild 2 : II. Rotational evolution , 2007 .

[27]  Joseph A. Burns,et al.  Some background about satellites , 1986 .

[28]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[29]  Karri Muinonen,et al.  Statistical Ranging of Asteroid Orbits , 2001 .

[30]  D. Hestroffer,et al.  Orbit Determination of Binary Asteroids , 2006 .

[31]  J. Krist The Tiny Tim User’s Guide , 2004 .

[32]  P. Descamps Orbit of an Astrometric Binary System , 2005 .

[33]  Stephen C. Tegler,et al.  Color Patterns in the Kuiper Belt: A Possible Primordial Origin , 2003 .

[34]  David Jewitt,et al.  Densities of Solar System Objects from Their Rotational Light Curves , 2007 .

[35]  Karri Muinonen,et al.  Asteroid Orbit Determination Using Bayesian Probabilities , 1993 .

[36]  W. Durham,et al.  Cold compaction of water ice , 2005 .

[37]  JOHN S. Lewis,et al.  Mass-radius relationships in icy satellites , 1979 .

[38]  M. Granvik Asteroid identification using statistical orbital inversion methods , 2007 .

[39]  H. F. Levison,et al.  Discovery of a binary Centaur , 2006 .

[40]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2000, astro-ph/0507614.

[41]  T. Teichmann,et al.  Fundamentals of celestial mechanics , 1963 .

[42]  David L. Rabinowitz,et al.  Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt , 2006 .

[43]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[44]  K. Muinonen,et al.  Orbit computation for transneptunian objects , 2003 .

[45]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .