A reference-free 7-bit 500 MS/s pipeline ADC using current-mode reference shifting and quantizers with built-in thresholds

The pursuit for energy and area efficient circuits has become greater than ever. Low power and small area integrated circuits are in high demand today. Reference voltage circuitry for analog-to-digital conversion comprises 20–30 % of the overall power and area of the ADC. To this end, a fully differential 1.5-bit multiplying digital-to-analog converter (MDAC) precluding reference voltages, that can be employed in MDAC-based ADCs, is presented. Reference shifting is performed in current-mode and the gain of two is obtained by associating charged capacitors in series in the opamp’s feedback loop, achieving a unity feedback factor. Theoretical analyses of various nonideal effects of the reference shifting and gain of two are presented and confirmed with electrical level simulations. Furthermore, to avoid reference voltages in the local quantizers, an architecture with built-in thresholds is used. A proof of concept 1.5-bit/stage 7-bit 500 MS/s pipeline ADC is designed using the proposed MDAC in a standard digital 0.13 μm CMOS technology. The ADC achieves a peak SNDR and SFDR of 36.1 and 48.7 dB, respectively, while dissipating 12.7 mW from a single 1.2 V supply voltage, and it does not require external reference circuitry.

[1]  Bertan Bakkaloglu,et al.  A 10 b 50 MS/s Opamp-Sharing Pipeline A/D With Current-Reuse OTAs , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[2]  A. Keramat,et al.  A capacitor mismatch and gain insensitive 1.5-bit/stage pipelined A/D converter , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[3]  B. Razavi,et al.  A 10-Bit 500-MS/s 55-mW CMOS ADC , 2009, IEEE Journal of Solid-State Circuits.

[4]  I-Ching Chen,et al.  A 1-GS/s 6-Bit Two-Channel Two-Step ADC in 0.13-$\mu$m CMOS , 2009, IEEE Journal of Solid-State Circuits.

[5]  Pui-In Mak,et al.  Modeling of noise sources in reference voltage generator for very-high-speed pipelined ADC , 2004, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04..

[6]  T. Nezuka,et al.  A 10-bit 200MS/s Pipeline A/D Converter for High-Speed Video Signal Digitizer , 2006, 2006 IEEE Asian Solid-State Circuits Conference.

[7]  P. Quinn,et al.  Capacitor matching insensitive 12-bit 3.3 MS/s algorithmic ADC in 0.25 /spl mu/m CMOS , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[8]  Ying-Hsi Lin,et al.  A 7b 1.1GS/s Reconfigurable Time-Interleaved ADC in 90nm CMOS , 2007, 2007 IEEE Symposium on VLSI Circuits.

[9]  Seung-Hoon Lee,et al.  An 11b 70-MHz 1.2-mm/sup 2/ 49-mW 0.18-/spl mu/m CMOS ADC with on-chip current/voltage references , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Tetsuya Iida,et al.  A 1.0 V 40mW 10b 100MS/s pipeline ADC in 90nm CMOS , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[11]  Hae-Seung Lee,et al.  A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC , 2007, IEEE Journal of Solid-State Circuits.

[12]  Yun Chiu,et al.  Inherently linear capacitor error-averaging techniques for pipelined A/D conversion , 2000 .

[13]  Kiat Seng Yeo,et al.  An 8-bit 200-MSample/s Pipelined ADC With Mixed-Mode Front-End S/H Circuit , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Deog-Kyoon Jeong,et al.  A 30mW 8b 200MS/s pipelined CMOS ADC using a switched-opamp technique , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[15]  Chulwoo Kim,et al.  10-bit 100-MS/s Pipelined ADC Using Input-Swapped Opamp Sharing and Self-Calibrated V/I Converter , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[16]  Wei-Hsuan Tu,et al.  A 1.2V 30mW 8b 800MS/s time-interleaved ADC in 65nm CMOS , 2008, 2008 IEEE Symposium on VLSI Circuits.

[17]  Andrea Baschirotto,et al.  A 90-nm CMOS, 8-bit pipeline ADC with 60-MHz bandwidth and 125-MS/s or 250-MS/s sampling frequency , 2010 .

[18]  Seung-Hoon Lee,et al.  A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-$\mu$ m CMOS ADC Operating Down to 0.5 V , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Hae-Seung Lee,et al.  Noise Analysis for Comparator-Based Circuits , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  N. Paulino,et al.  Flipped-around multiply-by-two amplifier with unity feedback factor , 2011 .

[21]  Jipeng Li,et al.  A highly integrated analog baseband transceiver featuring a 12-bit 180MSPS pipelined A/D converter for multi-channel wireless LAN , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[22]  Seung-Hoon Lee,et al.  An 11b 70 MHz 1.2 mm 2 49mW 0.18 um CMOS ADC with on–chip current/voltage references , 2002 .

[23]  J. Ryynanen,et al.  A 22 mA 3.7 dB NF direct conversion receiver for 3G WCDMA , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[24]  M. Timko,et al.  A 12 b 65 MSample/s CMOS ADC with 82 dB SFDR at 120 MHz , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[25]  Klaas Bult Embedded analog-to-digital converters , 2009, 2009 Proceedings of ESSCIRC.

[26]  Peter R. Kinget,et al.  A current reference pre-charged zero-crossing pipeline-SAR ADC in 65nm CMOS , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[27]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[28]  Edinei Santin,et al.  A Two-Stage Fully Differential Inverter-Based Self-Biased CMOS Amplifier With High Efficiency , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Mahmoud Kamarei,et al.  1.5-bit mismatch-insensitive MDAC with reduced input capacitive loading , 2009 .

[30]  K. Bacrania,et al.  A 14 b 20 MSample/s CMOS pipelined ADC , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[31]  Chih-Kong Ken Yang,et al.  Multilevel Power Optimization of Pipelined A/D Converters , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[32]  Reza Lotfi,et al.  A Capacitor Mismatch- and Nonlinearity-Insensitive 1.5-bit Residue Stage for Pipelined ADCs , 2007, 2007 14th IEEE International Conference on Electronics, Circuits and Systems.

[33]  A.P. Chandrakasan,et al.  A Highly Integrated CMOS Analog Baseband Transceiver With 180 MSPS 13-bit Pipelined CMOS ADC and Dual 12-bit DACs , 2006, IEEE Journal of Solid-State Circuits.

[34]  M. Waltari,et al.  A 10-bit 200 MS/s CMOS parallel pipeline A/D converter , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[35]  Adolfo Steiger-Garção,et al.  Low voltage low power fully differential self-biased 1.5-bit quantizer with built-in thresholds , 2012, Int. J. Circuit Theory Appl..

[36]  Hooman Darabi,et al.  A fully integrated SOC for 802.11b in 0.18-μm CMOS , 2005 .

[37]  Stephen H. Lewis,et al.  A 10-b 20-Msample/s analog-to-digital converter , 1992 .