A Bayesian Approach to Multilevel Structural Equation Modeling With Continuous and Dichotomous Outcomes

Multilevel Structural equation models are most often estimated from a frequentist framework via maximum likelihood. However, as shown in this article, frequentist results are not always accurate. Alternatively, one can apply a Bayesian approach using Markov chain Monte Carlo estimation methods. This simulation study compared estimation quality using Bayesian and frequentist approaches in the context of a multilevel latent covariate model. Continuous and dichotomous variables were examined because it is not yet known how different types of outcomes—most notably categorical—affect parameter recovery in this modeling context. Within the Bayesian estimation framework, the impact of diffuse, weakly informative, and informative prior distributions were compared. Findings indicated that Bayesian estimation may be used to overcome convergence problems and improve parameter estimate bias. Results highlight the differences in estimation quality between dichotomous and continuous variable models and the importance of prior distribution choice for cluster-level random effects.

[1]  Sarah Depaoli,et al.  The Impact of Inaccurate “Informative” Priors for Growth Parameters in Bayesian Growth Mixture Modeling , 2014 .

[2]  Bengt Muthén,et al.  Bayesian structural equation modeling: a more flexible representation of substantive theory. , 2012, Psychological methods.

[3]  B. Muthén,et al.  The multilevel latent covariate model: a new, more reliable approach to group-level effects in contextual studies. , 2008, Psychological methods.

[4]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[5]  Ulrich Trautwein,et al.  Doubly-Latent Models of School Contextual Effects: Integrating Multilevel and Structural Equation Approaches to Control Measurement and Sampling Error , 2009, Multivariate behavioral research.

[6]  Tihomir Asparouhov,et al.  Item Response Modeling in Mplus: A Multi-Dimensional, Multi-Level, and Multi-Timepoint Example , 2013 .

[7]  Gro Ellen Mathisen,et al.  The team-level model of climate for innovation: A two-level confirmatory factor analysis , 2006 .

[8]  Peter Congdon Applied Bayesian Hierarchical Methods , 2010 .

[9]  Kamel Jedidi,et al.  Bayesian factor analysis for multilevel binary observations , 2000 .

[10]  Tihomir Asparouhov,et al.  Bayesian Analysis of Latent Variable Models using Mplus , 2010 .

[11]  Ehri Ryu,et al.  Level-Specific Evaluation of Model Fit in Multilevel Structural Equation Modeling , 2009 .

[12]  Scott A Baldwin,et al.  Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. , 2013, Psychological methods.

[13]  B. Muthén Latent variable modeling in heterogeneous populations , 1989 .

[14]  T. Devos,et al.  Human Values and Trust in Institutions across Countries: A Multilevel Test of Schwartz's Hypothesis of Structural Equivalence , 2012 .

[15]  Jonathon Little Multilevel confirmatory ordinal factor analysis of the Life Skills Profile-16. , 2013, Psychological assessment.

[16]  K. Jöreskog,et al.  Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models , 2010 .

[17]  Michael C Neale,et al.  People are variables too: multilevel structural equations modeling. , 2005, Psychological methods.

[18]  Willem J. van der Linden,et al.  Using Response Times for Item Selection in Adaptive Testing , 2008 .

[19]  Laurence S. Freedman,et al.  Bayesian statistical methods , 1996, BMJ.

[20]  Franz J. Neyer,et al.  A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research , 2013, Child development.

[21]  Mike W.-L. Cheung,et al.  Applications of Multilevel Structural Equation Modeling to Cross-Cultural Research , 2005 .

[22]  T. Asparouhov General Random Effect Latent Variable Modeling : Random Subjects , Items , Contexts , and Parameters , 2012 .

[23]  Math J. J. M. Candel,et al.  Performance of Empirical Bayes Estimators of Level-2 Random Parameters in Multilevel Analysis: A Monte Carlo Study for Longitudinal Designs , 2003 .

[24]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[25]  Sik-Yum Lee A bayesian approach to confirmatory factor analysis , 1981 .

[26]  Snigdhansu Chatterjee,et al.  Structural Equation Modeling, A Bayesian Approach , 2008, Technometrics.

[27]  Sarah Depaoli,et al.  Bayesian Statistical Methods , 2013 .

[28]  D. Dey,et al.  To Bayes or Not to Bayes, From Whether to When: Applications of Bayesian Methodology to Modeling , 2004 .

[29]  Catherine P. Bradshaw,et al.  Examining classroom influences on student perceptions of school climate: the role of classroom management and exclusionary discipline strategies. , 2013, Journal of school psychology.

[30]  Jee-Seon Kim,et al.  Multilevel latent variable modeling: Current research and recent developments. , 2009 .

[31]  Myeongsun Yoon,et al.  Testing Factorial Invariance in Multilevel Data: A Monte Carlo Study , 2012 .

[32]  A. Satorra,et al.  Complex Sample Data in Structural Equation Modeling , 1995 .

[33]  F B Hu,et al.  Intraclass correlation estimates in a school-based smoking prevention study. Outcome and mediating variables, by sex and ethnicity. , 1996, American journal of epidemiology.

[34]  J. Berger The case for objective Bayesian analysis , 2006 .

[35]  Roel Bosker,et al.  Multilevel analysis : an introduction to basic and advanced multilevel modeling , 1999 .

[36]  Terry E. Duncan,et al.  Analyzing measurement models of latent variables through multilevel confirmatory factor analysis and hierarchical linear modeling approaches , 1998 .

[37]  Kristopher J Preacher,et al.  Alternative Methods for Assessing Mediation in Multilevel Data: The Advantages of Multilevel SEM , 2011 .

[38]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[39]  R. Matsueda,et al.  KEY ADVANCES IN THE HISTORY OF STRUCTURAL EQUATION MODELING , 2012 .

[40]  Bengt Muthén,et al.  Multilevel Factor Analysis of Class and Student Achievement Components , 1991 .

[41]  R. P. McDonald,et al.  Bayesian estimation in unrestricted factor analysis: A treatment for heywood cases , 1975 .

[42]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[43]  Cora J. M. Maas,et al.  The effect of estimation method and sample size in multilevel structural equation modeling , 2010 .

[44]  William J. Browne,et al.  Bayesian and likelihood-based methods in multilevel modeling 1 A comparison of Bayesian and likelihood-based methods for fitting multilevel models , 2006 .

[45]  David B. Dunson,et al.  Bayesian Structural Equation Modeling , 2007 .

[46]  M. Julian The Consequences of Ignoring Multilevel Data Structures in Nonhierarchical Covariance Modeling , 2001 .

[47]  J. Fox,et al.  Bayesian estimation of a multilevel IRT model using gibbs sampling , 2001 .

[48]  Howard T. Everson,et al.  Beyond Individual Differences: Exploring School Effects on SAT Scores , 2004 .

[49]  Joseph A. Olsen,et al.  Group Climate, Cohesion, Alliance, and Empathy in Group Psychotherapy: Multilevel Structural Equation Models. , 2005 .

[50]  Ehri Ryu,et al.  Effects of skewness and kurtosis on normal-theory based maximum likelihood test statistic in multilevel structural equation modeling , 2011, Behavior research methods.

[51]  S. N. Beretvas,et al.  Sample Size Limits for Estimating Upper Level Mediation Models Using Multilevel SEM , 2013 .

[52]  D. Dunson,et al.  Bayesian latent variable models for clustered mixed outcomes , 2000 .

[53]  Ulrich Trautwein,et al.  Classroom Climate and Contextual Effects: Conceptual and Methodological Issues in the Evaluation of Group-Level Effects , 2012 .

[54]  Rosalie J. Hall,et al.  Applying multilevel confirmatory factor analysis techniques to the study of leadership , 2005 .

[55]  David C. Atkins,et al.  Intraclass Correlation Associated with Therapists: Estimates and Applications in Planning Psychotherapy Research , 2011, Cognitive behaviour therapy.

[56]  Andreas Ritter,et al.  Structural Equations With Latent Variables , 2016 .

[57]  L. Brown In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies , 2008, 0803.3697.

[58]  D M Murray,et al.  Planning for the appropriate analysis in school-based drug-use prevention studies. , 1990, Journal of consulting and clinical psychology.

[59]  Scott M. Lynch,et al.  Introduction to Applied Bayesian Statistics and Estimation for Social Scientists , 2007 .

[60]  Kristopher J Preacher Multilevel SEM Strategies for Evaluating Mediation in Three-Level Data , 2011, Multivariate behavioral research.

[61]  R. Scheines,et al.  Bayesian estimation and testing of structural equation models , 1999 .

[62]  William Francis Darnieder Bayesian Methods for Data-Dependent Priors , 2011 .

[63]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Jean-Paul Fox,et al.  Bayesian Item Response Modeling , 2010 .

[65]  Sik-Yum Lee,et al.  Structural equation modelling: A Bayesian approach. , 2007 .

[66]  Queenie Leung,et al.  Multilevel Factor Analysis and Structural Equation Modeling of Daily Diary Coping Data : Modeling Trait and State Variation , 2011 .

[67]  Oi-Man Kwok,et al.  Using SEM to Analyze Complex Survey Data: A Comparison between Design-Based Single-Level and Model-Based Multilevel Approaches , 2012 .

[68]  B. Muthén,et al.  Multilevel Covariance Structure Analysis , 1994 .

[69]  Walter R. Gilks,et al.  BUGS - Bayesian inference Using Gibbs Sampling Version 0.50 , 1995 .

[70]  Sophia Rabe-Hesketh,et al.  Multilevel Structural Equation Modeling , 2009 .

[71]  Ulrich Trautwein,et al.  A 2 × 2 taxonomy of multilevel latent contextual models: accuracy-bias trade-offs in full and partial error correction models. , 2011, Psychological methods.

[72]  Jaak Billiet,et al.  A Monte Carlo sample size study: How many countries are needed for accurate multilevel SEM? , 2009 .

[73]  Frans J. Oort,et al.  How to Improve Teaching Practices , 2011 .

[74]  Cora J. M. Maas,et al.  The Accuracy of Multilevel Structural Equation Modeling With Pseudobalanced Groups and Small Samples , 2001 .

[75]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[76]  W. Holmes Finch,et al.  Estimation of MIMIC Model Parameters with Multilevel Data , 2011 .

[77]  J. Kyle Roberts,et al.  Handbook of advanced multilevel analysis , 2011 .

[78]  Kristopher J Preacher,et al.  A general multilevel SEM framework for assessing multilevel mediation. , 2010, Psychological methods.

[79]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[80]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[81]  Walter Sermeus,et al.  Multilevel factor analytic models for assessing the relationship between nurse-reported adverse events and patient safety , 2014 .

[82]  Michael D. Toland,et al.  A Multilevel Factor Analysis of Students’ Evaluations of Teaching , 2005 .

[83]  E. S. Kim,et al.  Testing Measurement Invariance: A Comparison of Multiple-Group Categorical CFA and IRT , 2011 .

[84]  A. Panter,et al.  The Effects of Educational Diversity in a National Sample of Law Students: Fitting Multilevel Latent Variable Models in Data With Categorical Indicators , 2009, Multivariate behavioral research.

[85]  B. Muthén,et al.  Computationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models , 2007 .

[86]  Joop J. Hox,et al.  How few countries will do? Comparative survey analysis from a Bayesian perspective , 2012 .

[87]  S. Rabe-Hesketh,et al.  Generalized multilevel structural equation modeling , 2004 .

[88]  Harvey Goldstein,et al.  Multilevel Structural Equation Models for the Analysis of Comparative Data on Educational Performance , 2007 .

[89]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[90]  M. G. Pittau,et al.  A weakly informative default prior distribution for logistic and other regression models , 2008, 0901.4011.

[91]  Harvey Goldstein,et al.  A Multilevel Factor Model for Mixed Binary and Ordinal Indicators of Women's Status , 2006 .

[92]  Sophia Rabe-Hesketh,et al.  A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models , 2013, Psychometrika.