Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models

Abstract A critical review is given of status and perspectives of Monte Carlo simulations that address bulk and interfacial phase transitions of ferromagnetic Ising models. First, some basic methodological aspects of these simulations are briefly summarized (single-spin flip vs. cluster algorithms, finite-size scaling concepts), and then the application of these techniques to the nearest-neighbor Ising model in d=3 and 5 dimensions is described, and a detailed comparison to theoretical predictions is made. In addition, the case of Ising models with a large but finite range of interaction and the crossover scaling from mean-field behavior to the Ising universality class are treated. If one considers instead a long-range interaction described by a power-law decay, new classes of critical behavior depending on the exponent of this power law become accessible, and a stringent test of the e-expansion becomes possible. As a final type of crossover from mean-field type behavior to two-dimensional Ising behavior, the interface localization–delocalization transition of Ising films confined between “competing” walls is considered. This problem is still hampered by questions regarding the appropriate coarse-grained model for the fluctuating interface near a wall, which is the starting point for both this problem and the theory of critical wetting.

[1]  Y. Yamazaki Comments on the critical behavior of isotropic spin systems with long- and short-range interactions , 1978 .

[2]  Compagner Operational conditions for random-number generation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Joan Adler,et al.  Critical temperatures of the d=3, s= 1 / 2 Ising model; the effect of confluent corrections to scaling , 1983 .

[4]  Ramaker,et al.  Absolute cross section for dissociative electron attachment in O2 condensed on Kr film. , 1990, Physical review letters.

[5]  M. Suzuki,et al.  Monte Carlo Study of the Spontaneous Magnetization of the Three-Dimensional Ising Model , 1991 .

[6]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  M. Fisher,et al.  Detailed Magnetic Behavior of Nickel Near its Curie Point , 1964 .

[9]  Nickel,et al.  Nonasymptotic critical behavior from field theory at d=3. II. The ordered-phase case. , 1985, Physical review. B, Condensed matter.

[10]  Ulli Wolff,et al.  Collective Monte Carlo Updating in a High Precision Study of the X-y Model , 1989 .

[11]  J. Rudnick,et al.  Finite-size scaling and the renormalization group , 1985 .

[12]  Masuo Suzuki Static and Dynamic Finite-Size Scaling Theory Based on the Renormalization Group Approach , 1977 .

[13]  Michael E. Fisher,et al.  Critical Exponents for Long-Range Interactions , 1972 .

[14]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[15]  Evans,et al.  Critical amplitude ratios for critical wetting in three dimensions: Observation of nonclassical behavior in the Ising model. , 1991, Physical Review B (Condensed Matter).

[16]  Calculation of universal amplitude ratios in three-loop order , 1996, cond-mat/9606091.

[17]  M. Fisher The story of coulombic critiality , 1994 .

[18]  S. Leibler,et al.  Critical wetting : the domain of validity of mean field theory , 1983 .

[19]  Boulter,et al.  Surface Order Parameter Interface Hamiltonian: Renormalization of the Capillary Parameter at Complete Wetting. , 1995, Physical review letters.

[20]  Cluster Monte Carlo algorithms for random Ising models , 1991 .

[21]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[22]  Kim Asymptotic scaling of the mass gap in the two-dimensional O(3) nonlinear sigma model: A numerical study. , 1994, Physical review. D, Particles and fields.

[23]  P Heller,et al.  Experimental investigations of critical phenomena , 1967 .

[24]  Bagnuls,et al.  Nonuniversal power laws and crossover from critical to classical behavior. , 1987, Physical review letters.

[25]  Alan M. Ferrenberg,et al.  Statistical and systematic errors in Monte Carlo sampling , 1991 .

[26]  R. Botet,et al.  Size Scaling for Infinitely Coordinated Systems , 1982 .

[27]  Kroll,et al.  Critical wetting with short-range forces: Is mean-field theory valid? , 1986, Physical review letters.

[28]  Gupta,et al.  Monte Carlo renormalization-group study of the three-dimensional Ising model. , 1992, Physical review. B, Condensed matter.

[29]  Jian-Sheng Wang Clusters in the three-dimensional Ising model with a magnetic field , 1989 .

[30]  Vladimir Privman,et al.  Finite-size effects at first-order transitions , 1983 .

[31]  Shang‐keng Ma Modern Theory of Critical Phenomena , 1976 .

[32]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Dietrich Stauffer,et al.  Anual Reviews of Computational Physics VII , 1994 .

[34]  Binder,et al.  Wetting and layering in the nearest-neighbor simple-cubic Ising lattice: A Monte Carlo investigation. , 1988, Physical review. B, Condensed matter.

[35]  K. Binder,et al.  The Monte Carlo Method in Condensed Matter Physics , 1992 .

[36]  K. Binder,et al.  Linear and nonlinear relaxation and cluster dynamics near critical points , 1976 .

[37]  L. Schulman In: Finite size scaling and numerical simulation of statistical systems , 1990 .

[38]  K. Binder,et al.  Adsorption on stepped surfaces: A Monte Carlo simulation , 1989 .

[39]  É. Brézin,et al.  Scaling functions for 3d critical wetting , 1987 .

[40]  F. Bates,et al.  Critical dynamics of polymer blends , 1991 .

[41]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[42]  Landau,et al.  Monte Carlo investigation of critical dynamics in the three-dimensional Ising model. , 1991, Physical review. B, Condensed matter.

[43]  J. Joanny Critical properties of a system of two molten polymers , 1978 .

[44]  Technology,et al.  Shape of crossover between mean-field and asymptotic critical behavior in a three-dimensional Ising lattice , 1998, cond-mat/9810252.

[45]  D. Hamann,et al.  Exact Results in the Kondo Problem. II. Scaling Theory, Qualitatively Correct Solution, and Some New Results on One-Dimensional Classical Statistical Models , 1970 .

[46]  K. Binder Chapter III Phase transitions at surfaces , 1995 .

[47]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[48]  S. B. Kiselev,et al.  Crossover behavior of the susceptibility and the specific heat near a second-order phase transition , 1992 .

[49]  Binder,et al.  Medium-range interactions and crossover to classical critical behavior. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Karl Heinz Hoffmann,et al.  Computational physics : selected methods, simple exercises, serious applications , 1996 .

[51]  Crossover behavior in 3He and Xe near their liquid-vapor critical point , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  Evans,et al.  Interface localization transition in Ising films with competing walls: Ginzburg criterion and crossover scaling. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  Kurt Binder,et al.  Phase transitions of a nearest-neighbor Ising-model spin glass , 1976 .

[54]  R. E. Mills,et al.  Critical phenomena. , 1971, Science.

[55]  Fisher,et al.  Is short-range "critical" wetting a first-order transition? , 1992, Physical review letters.

[56]  Evans,et al.  Length scales for wetting transitions: Beyond the continuum Landau approximation for the interfacial binding potential. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[57]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[58]  S. B. Kiselev,et al.  Crossover approach to global critical phenomena in fluids , 1992 .

[59]  Alan M. Ferrenberg,et al.  Wetting in fluid systems. Wetting and capillary condensation of lattice gases in thin film geometry , 1994 .

[60]  H. Blöte,et al.  MONTE CARLO METHOD FOR SPIN MODELS WITH LONG-RANGE INTERACTIONS , 1995 .

[61]  Ulrich H. E. Hansmann,et al.  Properties of interfaces in the two and three dimensional Ising model , 1992 .

[62]  W. Theumann,et al.  Validity of the long-range expansion in the n-vector model , 1983 .

[63]  Erik Luijten,et al.  Classical critical behavior of spin models with long-range interactions , 1997 .

[64]  George Marsaglia,et al.  A random number generator for PC's , 1990 .

[65]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[66]  Michael E. Fisher,et al.  Scaling Theory for Finite-Size Effects in the Critical Region , 1972 .

[67]  V. Dohm The superfluid transition in confined 4He: Renormalization-group theory , 1993 .

[68]  Kurt Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[69]  Jean Zinn-Justin,et al.  Critical Exponents for the N Vector Model in Three-Dimensions from Field Theory , 1977 .

[70]  David Ruelle,et al.  Statistical mechanics of a one-dimensional lattice gas , 1968 .

[71]  K. Binder Critical properties and finite-size effects of the five-dimensional Ising model , 1985 .

[72]  Fisher,et al.  Effective potentials, constraints, and critical wetting theory. , 1991, Physical review. B, Condensed matter.

[73]  Robert Botet,et al.  Large-size critical behavior of infinitely coordinated systems , 1983 .

[74]  Janssen,et al.  Mean-field Ising crossover and the critical exponents gamma, nu, and eta for a polymer blend: d-PB/PS studied by small-angle neutron scattering. , 1992, Physical review letters.

[75]  Nobuyasu Ito,et al.  Non-equilibrium critical relaxation of the Wolff dynamics of the Ising model , 1993 .

[76]  J. Nicoll,et al.  Crossover functions by renormalization-group matching: O(ε 2 ) results , 1981 .

[77]  H. Gausterer,et al.  Computational Methods in Field Theory , 1992 .

[78]  K. K. Mon Finite-size scaling of the 5D Ising model , 1996 .

[79]  F. James,et al.  RANLUX: A Fortran implementation of the high-quality pseudorandom number generator of Lüscher , 1994 .

[80]  Pablo Tamayo Magnetization relaxation to equilibrium on large 2D Swendsen-Wang Ising models , 1993 .

[81]  J. Indekeu,et al.  Effect of Gravity and Confinement on Phase Equilibria , 1993 .

[82]  P. Hohenberg,et al.  Universal relations among thermodynamic critical amplitudes , 1976 .

[83]  Y. Melnichenko,et al.  Sharp Crossover of the Susceptibility in Polymer Solutions near the Critical Demixing Point , 1997 .

[84]  C. Tanford Macromolecules , 1994, Nature.

[85]  K. Binder Nucleation barriers, spinodals, and the Ginzburg criterion , 1984 .

[86]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[87]  Kurt Binder,et al.  Monte Carlo study of thin magnetic Ising films , 1974 .

[88]  Finite Size Scaling and “perfect” actions: the three dimensional Ising model , 1998, hep-lat/9805022.

[89]  M. Swift,et al.  Effect of Confinement on Wetting and Drying Between Opposing Boundaries , 1991 .

[90]  J. Sengers,et al.  Nature of crossover between ising-like and mean-field critical behavior in fluids and fluid mixtures. , 1995, Physical review letters.

[91]  D. Landau Computer simulation studies of critical phenomena , 1994 .

[92]  E. W. Fischer,et al.  Critical behavior in a binary polymer blend as studied by static and dynamic light scattering , 1992 .

[93]  Baker,et al.  Renormalized coupling constant for the three-dimensional ising model. , 1995, Physical review letters.

[94]  J. Kosterlitz Phase Transitions in Long-Range Ferromagnetic Chains , 1976 .

[95]  K. Binder,et al.  Crossover Phenomena and Finite-Size Scaling Analysis of Numerical Simulations , 1992 .

[96]  J. Rudnick,et al.  The fully finite spherical model , 1986 .

[97]  D. Landau,et al.  Finite-size behavior of the simple-cubic Ising lattice , 1976 .

[98]  Poon,et al.  Formation of an icosahedral phase by solid-state reaction. , 1986, Physical review letters.

[99]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[100]  Erik Luijten,et al.  Ising universality in three dimensions: a Monte Carlo study , 1995, cond-mat/9509016.

[101]  High-temperature series analysis of the free energy and susceptibility of the 2D random-bond Ising model , 1999, cond-mat/9905255.

[102]  Anilesh Kumar,et al.  Crossover from Ising to mean-field critical behavior in an aqueous electrolyte solution , 1998 .

[103]  J. Sak Recursion Relations and Fixed Points for Ferromagnets with Long-Range Interactions , 1973 .

[104]  M. Hasenbusch,et al.  and from 3D Ising energy and specific heat , 1998 .

[105]  M. Fisher,et al.  On the stiffness of an interface near a wall , 1994 .

[106]  Jian-Sheng Wang,et al.  Field theory of finite-size effects in Ising-like systems , 1995 .

[107]  K. Binder Finite size effects on phase transitions , 1987 .

[108]  Evans,et al.  Influence of wetting on phase equilibria: A novel mechanism for critical-point shifts in films. , 1990, Physical review letters.

[109]  F. Dyson Non-existence of spontaneous magnetization in a one-dimensional Ising ferromagnet , 1969 .

[110]  Kurt Binder,et al.  Monte Carlo Investigation of Dynamic Critical Phenomena in the Two-Dimensional Kinetic Ising Model , 1973 .

[111]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[112]  U. Wolff Comparison Between Cluster Monte Carlo Algorithms in the Ising Model , 1989 .

[113]  Nicoll,et al.  Crossover functions by renormalization-group matching: Three-loop results. , 1985, Physical review. B, Condensed matter.

[114]  Anthony N. Burkitt,et al.  System size dependence of the autocorrelation time for the Swendsen-Wang Ising model , 1990 .

[115]  É. Brézin,et al.  Amplitude of the surface tension near the critical point , 1984 .

[116]  W. Selke,et al.  Monte Carlo and molecular dynamics of condensed matter systems , 1997 .

[117]  B. M. Fulk MATH , 1992 .

[118]  H. Blöte,et al.  Finite-size calculations on the three-dimensional Ising model , 1993 .

[119]  A. Pelissetto,et al.  MEAN-FIELD EXPANSION FOR SPIN MODELS WITH MEDIUM-RANGE INTERACTIONS , 1999, cond-mat/9903410.

[120]  Critical properties of the three-dimensional equivalent-neighbor model and crossover scaling in finite systems. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[121]  W. Selke,et al.  Cluster-flipping Monte Carlo algorithm and correlations in good' random number generators , 1993 .

[122]  Burkhard Monien,et al.  Multiscale phenomena and their simulation , 1997 .

[123]  N vector spin models on the sc and the bcc lattices: A Study of the critical behavior of the susceptibility and of the correlation length by high temperature series extended to order beta(21) , 1997, hep-lat/9703018.

[124]  J. Sengers,et al.  Thermodynamic properties of ammonia in the critical region , 1999 .

[125]  Jan V. Sengers,et al.  Thermodynamic Behavior of Fluids Near the Critical Point , 1986 .

[126]  Fisher,et al.  Long-range crossover and "nonuniversal" exponents in micellar solutions. , 1986, Physical review letters.

[127]  Nóvotný,et al.  Critical finite-range scaling in scalar-field theories and Ising models. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[128]  K. K. Mon,et al.  Direct calculation of interfacial tension for lattice models by the Monte Carlo method , 1984 .

[129]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[130]  G. Joyce Spherical Model with Long-Range Ferromagnetic Interactions , 1966 .

[131]  M. Fisher The theory of equilibrium critical phenomena , 1967 .

[132]  Finite Size Scaling Effects in Dynamics , 1987 .

[133]  Erik Luijten Interaction Range, Universality and the Upper Critical Dimension , 1997 .

[134]  J. Adler,et al.  High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model , 1998 .

[135]  J. Dudowicz,et al.  Limits of validity for mean field description of compressible binary polymer blends , 1994 .

[136]  Rajan Gupta,et al.  CRITICAL EXPONENTS OF THE 3-D ISING MODEL , 1996 .

[137]  M. Luescher,et al.  A Portable High-quality Random Number Generator for Lattice Field Theory Simulations , 1993 .

[138]  Wilson-type expansions of critical exponents for long-range interactions , 1972 .

[139]  Four-point renormalized coupling constant and Callan-Symanzik beta-function in O(N) models , 1997, cond-mat/9711078.

[140]  Binder,et al.  Character of the phase transition in thin ising films with competing walls. , 1995, Physical review letters.

[141]  A. O. Parry,et al.  Complete wetting in three dimensions II. Renormalization of the capillary parameter , 1995 .

[142]  E. Marinari,et al.  Cluster algorithms for the generalized 3d, 3q Potts model , 1990 .

[143]  Li,et al.  Rigorous lower bound on the dynamic critical exponent of some multilevel Swendsen-Wang algorithms. , 1991, Physical review letters.

[144]  J. Zinn-Justin,et al.  Accurate critical exponents for Ising like systems in non-integer dimensions , 1987 .

[145]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[146]  K. Pitzer,et al.  CRITICAL PHENOMENA IN IONIC FLUIDS : A SYSTEMATIC INVESTIGATION OF THE CROSSOVER BEHAVIOR , 1995 .

[147]  Brézin,et al.  Critical wetting in three dimensions: A Ginzburg criterion. , 1987, Physical review letters.

[148]  K. Binder,et al.  Critical behavior and crossover scaling in symmetric polymer mixtures: a Monte Carlo investigation , 1992 .

[149]  K. Binder Clusters in the Ising Model, Metastable States and Essential Singularity , 1976 .

[150]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[151]  K. Mortensen,et al.  On the Crossover from Ising to Mean-Field Behaviour in Compatible Binary-Polymer Blends , 1993 .

[152]  J. Chayes,et al.  Discontinuity of the magnetization in one-dimensional 1/¦x−y¦2 Ising and Potts models , 1988 .

[153]  Kim Application of finite size scaling to Monte Carlo simulations. , 1993, Physical review letters.

[154]  Freeman J. Dyson,et al.  Existence of a phase-transition in a one-dimensional Ising ferromagnet , 1969 .

[155]  Binder,et al.  Thin Ising films with competing walls: A Monte Carlo study. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[156]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[157]  Dietrich Stauffer,et al.  Relaxation of Ising models near and away from criticality , 1997 .

[158]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[159]  G. Münster INTERFACE TENSION IN THREE-DIMENSIONAL SYSTEMS FROM FIELD THEORY , 1990 .

[160]  Surface tension, surface stiffness, and surface width of the 3-dimensional Ising model on a cubic lattice , 1992, hep-lat/9209013.

[161]  L. A. Fernandez,et al.  Scaling corrections: Site percolation and Ising model in three-dimensions , 1999 .

[162]  J. Zinn-Justin Analysis of high temperature series of the spin S Ising model on the body-centred cubic lattice , 1981 .

[163]  Koch,et al.  Order-Parameter Relaxation Times of Finite Three-Dimensional Ising-like Systems. , 1996, Physical review letters.

[164]  Kurt Binder,et al.  Applications of Monte Carlo methods to statistical physics , 1997 .

[165]  M. Basta,et al.  An introduction to percolation , 1994 .

[166]  Dohm,et al.  Possible resolution of the finite-size scaling problem in 4He. , 1988, Physical review letters.

[167]  D. Stauffer,et al.  Universality of Second-Order Phase Transitions: The Scale Factor for the Correlation Length , 1972 .

[168]  Philip W. Anderson,et al.  Some numerical results on the Kondo problem and the inverse square one-dimensional Ising model , 1971 .

[169]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[170]  Robert H. Swendsen,et al.  Monte Carlo Renormalization Group Calculations of Critical Behavior in the Simple Cubic Ising Model , 1984 .

[171]  M. Fisher,et al.  Cubic fields, bicritical crossover, the spherical and van der Waals limits , 1980 .

[172]  K. Binder Finite size scaling analysis of ising model block distribution functions , 1981 .

[173]  Boris M. Smirnov,et al.  Computer simulation studies in condensed matter physics , 1989 .

[174]  J. Sengers,et al.  Crossover critical phenomena in complex fluids , 1999 .

[175]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[176]  Privman,et al.  Effect of boundary conditions on the critical behavior of a fi- nite high-dimensional Ising model. , 1985, Physical review. B, Condensed matter.

[177]  É. Brézin QUANTUM FIELD THEORY AND STATISTICAL MECHANICS , 1982 .

[178]  A. L. Talapov,et al.  The magnetization of the 3D Ising model , 1996 .

[179]  Nagao,et al.  Crossover from mean field to three-dimensional Ising critical behavior in a three-component microemulsion system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[180]  K. Binder,et al.  Fluctuations and lack of self-averaging in the kinetics of domain growth , 1986 .

[181]  M. Henkel Finite-Size Scaling , 1999 .

[182]  Fisher,et al.  Effective interface Hamiltonians for short-range critical wetting. , 1993, Physical Review B (Condensed Matter).

[183]  Fisher,et al.  Criticality and crossover in accessible regimes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[184]  R. Evans,et al.  Novel phase behaviour of a confined fluid or Ising magnet , 1992 .

[185]  Meyer,et al.  Monte Carlo renormalization of the 3D Ising model: Analyticity and convergence. , 1996, Physical Review Letters.

[186]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[187]  Andrea J. Liu,et al.  The three-dimensional Ising model revisited numerically , 1989 .

[188]  Jürg Fröhlich,et al.  The phase transition in the one-dimensional Ising Model with 1/r2 interaction energy , 1982 .

[189]  A. O. Parry,et al.  Complete wetting in three dimensions I. Connection between correlation functions and generalized effective Hamiltonian theory , 1995 .

[190]  P. Hummel,et al.  Elements of Mathematical Statistics. , 1961 .

[191]  K. Binder,et al.  Dynamic properties of the Monte Carlo method in statistical mechanics , 1973 .

[192]  K. Binder,et al.  Monte Carlo tests of theoretical predictions for critical phenomena : still a problem ? , 2000 .

[193]  Wolfhard Janke,et al.  Multicanonical Monte Carlo simulations , 1998 .

[194]  M. Kikuchi,et al.  Statistical Dependence Time and Its Application to Dynamical Critical Exponent , 1993 .

[195]  O. G. Mouritsen,et al.  Efficient Monte Carlo Sampling by direct flattening of free energy barriers , 1999 .

[196]  V. Dohm,et al.  Minimal renormalization without ε-expansion: Critical behavior in three dimensions , 1989 .

[197]  K. Binder Phase transitions in polymer blends and block copolymer melts: Some recent developments , 1994 .

[198]  N. Hatano,et al.  A Bivariate Multicanonical Monte Carlo of the 3D ±J Spin Glass , 1999 .

[199]  K. Binder Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures , 1983 .

[200]  Jean Zinn-Justin,et al.  Critical exponents from field theory , 1980 .

[201]  K. Pinn,et al.  Computing the roughening transition of Ising and solid-on-solid models by BCSOS model matching , 1997 .

[202]  Mortensen,et al.  Mean-field and Ising critical behavior of a polymer blend. , 1987, Physical review letters.

[203]  X. Chen,et al.  Failure of universal finite-size scaling above the upper critical dimension , 1998 .

[204]  David P. Landau,et al.  Computer Simulation Studies in Condensed Matter Physics , 1988 .

[205]  Cutoff and lattice effects in the theory of confined systems , 1999, cond-mat/9903102.

[206]  Wolfhard Janke,et al.  Nonlocal Monte Carlo algorithms for statistical physics applications , 1998 .

[207]  K. Binder,et al.  A finite size scaling study of the five-dimensional Ising model , 1994 .

[208]  Ferreira,et al.  Extrapolating Monte Carlo simulations to infinite volume: Finite-size scaling at xi /L >> 1. , 1995, Physical review letters.

[209]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[210]  Alan M. Ferrenberg,et al.  Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study. , 1991, Physical review. B, Condensed matter.

[211]  Vattulainen,et al.  Bit-level correlations in some pseudorandom number generators. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[212]  Binder,et al.  Wetting transitions near the bulk critical point: Monte Carlo simulations for the Ising model. , 1989, Physical review. B, Condensed matter.

[213]  K. Binder,et al.  Finite-Size Tests of Hyperscaling , 1985 .

[214]  Evans,et al.  Comment on simple scaling theory for three-dimensional critical wetting with short-ranged forces. , 1989, Physical review. B, Condensed matter.

[215]  M. Fisher CORRIGENDUM: On the critical polynomial of the simple cubic Ising model , 1995 .

[216]  K. Binder,et al.  Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations , 1989 .

[217]  J. Sengers,et al.  Global crossover equation of state of a van der Waals fluid , 1999 .

[218]  Scott Kirkpatrick,et al.  A very fast shift-register sequence random number generatorjournal of computational physics , 1981 .

[219]  Jean Zinn-Justin,et al.  Finite Size Effects in Phase Transitions , 1985 .

[220]  K. Wilson The renormalization group and critical phenomena , 1983 .

[221]  Jian-Sheng Wang,et al.  Anisotropic finite-size scaling analysis of a three-dimensional driven-diffusive system , 1998, cond-mat/9805285.

[222]  A. Esser,et al.  Field theory of finite-size effects for systems with a one-component order parameter , 1995 .

[223]  Binder,et al.  Finite-size scaling and the crossover to mean-field critical behavior in the two-dimensional Ising model with medium-ranged interactions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[224]  Li,et al.  Rigorous lower bound on the dynamic critical exponents of the Swendsen-Wang algorithm. , 1989, Physical review letters.

[225]  A. Rosengren On the combinatorial solution of the Ising model , 1986 .

[226]  Critical exponents of the N-vector model , 1998, cond-mat/9803240.

[227]  Franz Wegner,et al.  Scaling approach to anisotropic magnetic systems statics , 1969 .

[228]  J. Meunier,et al.  Observation of short-range critical wetting , 1999, Nature.

[229]  Kim,et al.  Numerical computation of finite size scaling functions: An alternative approach to finite size scaling. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[230]  Fisher,et al.  Wetting transitions: A functional renormalization-group approach. , 1985, Physical review. B, Condensed matter.

[231]  Shaw,et al.  Surface tension of the three-dimensional Ising model: A low-temperature series analysis. , 1989, Physical review. A, General physics.

[232]  K. Binder,et al.  Critical properties of the Flory–Huggins lattice model of polymer mixtures , 1987 .

[233]  A. Guttmann The high-temperature susceptibility and spin-spin correlation function of the three-dimensional Ising model , 1987 .

[234]  K. Binder Statistical mechanics of finite three-dimensional Ising models , 1972 .

[235]  Kurt Binder,et al.  Monte Carlo computer experiments on critical phenomena and metastable states , 1974 .

[236]  J. Rehr,et al.  High-temperature series for scalar-field Lattice models: Generation and analysis , 1990 .

[237]  R. Lipowsky,et al.  Effective field theory for interface delocalization transitions , 1983 .

[238]  D. Bailin Field theory , 1979, Nature.

[239]  Krech,et al.  Optimized energy calculation in lattice systems with long-range interactions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[240]  F. James A Review of Pseudorandom Number Generators , 1990 .

[241]  Eytan Domany,et al.  Introduction to the renormalization group and to critical phenomena , 1977 .

[242]  F. Livet The Cluster Updating Monte Carlo Algorithm Applied to the 3d Ising Problem , 1991 .

[243]  Renormalized couplings and scaling correction amplitudes in the N -vector spin models on the sc and the bcc lattices , 1998, hep-lat/9805025.

[244]  A. Guttmann Correction to scaling exponents and critical properties of the n-vector model with dimensionality > 4 , 1981 .

[245]  D. E. Aspnes,et al.  Static Phenomena Near Critical Points: Theory and Experiment , 1967 .

[246]  M. Fisher Renormalization group theory: Its basis and formulation in statistical physics , 1998 .

[247]  Raoul Kopelman,et al.  Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm , 1976 .

[248]  Erik Luijten Test of renormalization predictions for universal finite-size scaling functions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[249]  Fisher,et al.  Interfacial stiffness and the wetting parameter: The simple cubic Ising model. , 1992, Physical review letters.

[250]  Bates,et al.  Static and dynamic crossover in a critical polymer mixture. , 1990, Physical review letters.

[251]  B. Nickel Confluent singularities in 3D continuum Φ4 theory: resolving critical point discrepancies , 1991 .

[252]  Pearson,et al.  Finite-size scaling in the three-dimensional Ising model. , 1985, Physical review. B, Condensed matter.

[253]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[254]  Katta G. Murty,et al.  On KΔ , 1986, Discret. Appl. Math..

[255]  H. Blote,et al.  Universal ratio of magnetization moments in two-dimensional Ising models , 1993 .

[256]  J. V. Leeuwen,et al.  Position-space renormalization for systems with weak long-range interactions and the breakdown of hyperscaling , 1977 .

[257]  A. Compagner,et al.  Monte Carlo renormalization of the three-dimensional Ising model , 1989 .

[258]  P. D. Coddington,et al.  Analysis of random number generators using Monte Carlo simulation , 1993, cond-mat/9309017.

[259]  Michael E. Fisher,et al.  The renormalization group in the theory of critical behavior , 1974 .

[260]  David P. Landau,et al.  Finite-size behavior of the Ising square lattice , 1976 .

[261]  X. Chen,et al.  Finite-size scaling in the theory above the upper critical dimension , 1998 .

[262]  H. Rauch,et al.  Numerische Berechnung von Spin-Korrelationsfunktionen und Magnetisierungskurven von Ferromagnetica , 1969 .

[263]  Crossover scaling in two dimensions , 1997, cond-mat/9706257.

[264]  Dietrich Stauffer,et al.  Ising Kinetics With Hundred Giga-Sites , 1996 .

[265]  Fisher,et al.  Unusual bifurcation of renormalization-group fixed points for interfacial transitions. , 1986, Physical review letters.

[266]  George A. Baker,et al.  Quantitative theory of critical phenomena , 1990 .

[267]  D. Beysens Status of the Experimental Situation in Critical Binary Fluids , 1982 .

[268]  J. M. J. van Leeuwen,et al.  Real-Space Renormalization , 1982 .

[269]  W. Selke,et al.  The ANNNI model — Theoretical analysis and experimental application , 1988 .

[270]  B. Nickel Hyperscaling and universality in 3 dimensions , 1981 .

[271]  Lev N. Shchur,et al.  The Cluster Processor:. New Results , 1999 .

[272]  A Monte Carlo study of leading order scaling corrections of phi^4 theory on a three dimensional lattice , 1999, hep-lat/9902026.