Deep generative models for galaxy image simulations

Image simulations are essential tools for preparing and validating the analysis of current and future wide-field optical surveys. However, the galaxy models used as the basis for these simulations are typically limited to simple parametric light profiles, or use a fairly limited amount of available space-based data. In this work, we propose a methodology based on Deep Generative Models to create complex models of galaxy morphologies that may meet the image simulation needs of upcoming surveys. We address the technical challenges associated with learning this morphology model from noisy and PSF-convolved images by building a hybrid Deep Learning/physical Bayesian hierarchical model for observed images, explicitly accounting for the Point Spread Function and noise properties. The generative model is further made conditional on physical galaxy parameters, to allow for sampling new light profiles from specific galaxy populations. We demonstrate our ability to train and sample from such a model on galaxy postage stamps from the HST/ACS COSMOS survey, and validate the quality of the model using a range of second- and higher-order morphology statistics. Using this set of statistics, we demonstrate significantly more realistic morphologies using these deep generative models compared to conventional parametric models. To help make these generative models practical tools for the community, we introduce GalSim-Hub, a community-driven repository of generative models, and a framework for incorporating generative models within the GalSim image simulation software.

[1]  M. Huertas-Company,et al.  A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  Andrew P. Hearin,et al.  The LSST DESC DC2 Simulated Sky Survey , 2020, The Astrophysical Journal Supplement Series.

[3]  E. Aubourg,et al.  Deblending galaxies with variational autoencoders: A joint multiband, multi-instrument approach , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  Michael L. Waskom,et al.  mwaskom/seaborn: v0.10.1 (April 2020) , 2020 .

[5]  T Glanzman,et al.  The LSST DESC data challenge 1: generation and analysis of synthetic images for next-generation surveys , 2020, Monthly Notices of the Royal Astronomical Society.

[6]  P. Capak,et al.  A synthetic Roman Space Telescope High-Latitude Imaging Survey: simulation suite and the impact of wavefront errors on weak gravitational lensing , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  Nan Li,et al.  CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST , 2019, The Astrophysical Journal Supplement Series.

[8]  J. Weller,et al.  Monte Carlo control loops for cosmic shear cosmology with DES Year 1 data , 2019, Physical Review D.

[9]  Michael J. Smith,et al.  Generative deep fields: arbitrarily sized, random synthetic astronomical images through deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  Annalisa Pillepich,et al.  The IllustrisTNG simulations: public data release , 2018, Computational Astrophysics and Cosmology.

[11]  H. Hoekstra,et al.  Towards emulating cosmic shear data: revisiting the calibration of the shear measurements for the Kilo-Degree Survey , 2018, Astronomy & Astrophysics.

[12]  Levi Fussell,et al.  Forging new worlds: high-resolution synthetic galaxies with chained generative adversarial networks , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  David M. Reiman,et al.  Deblending galaxy superpositions with branched generative adversarial networks , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  D. Hogg,et al.  Hierarchical Modeling and Statistical Calibration for Photometric Redshifts , 2018, The Astrophysical Journal.

[15]  J. Rhodes,et al.  Image simulations for gravitational lensing withskylens , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  Fred Moolekamp,et al.  scarlet: Source separation in multi-band images by Constrained Matrix Factorization , 2018, Astron. Comput..

[17]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[18]  A. Leauthaud,et al.  Weak lensing shear calibration with simulations of the HSC survey , 2017, Monthly Notices of the Royal Astronomical Society.

[19]  D. Gerdes,et al.  Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE , 2017, 1708.01534.

[20]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[21]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[22]  Ce Zhang,et al.  Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit , 2017, ArXiv.

[23]  Dimitris N. Metaxas,et al.  StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[24]  M. Maturi De-noising the galaxies in the Hubble XDF with EMPCA , 2016, 1607.05724.

[25]  H. Hoekstra,et al.  Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.

[26]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[27]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[28]  Michael D. Schneider,et al.  GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology , 2014, 1412.1825.

[29]  R. Mandelbaum,et al.  The impact of cosmic variance on simulating weak lensing surveys , 2014, 1412.1094.

[30]  V. Vikram,et al.  A catalogue of 2D photometric decompositions in the SDSS-DR7 spectroscopic main galaxy sample: preferred models and systematics , 2014, 1406.4179.

[31]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[32]  Jun Zhang,et al.  Accurate shear measurement with faint sources , 2013, 1312.5514.

[33]  T. Kitching,et al.  On the Probability Distributions of Ellipticity , 2013, 1309.7844.

[34]  Aaron Roodman,et al.  THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK , 2013, 1308.4982.

[35]  C. Lintott,et al.  Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.

[36]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[37]  C. J. Conselice,et al.  New image statistics for detecting disturbed galaxy morphologies at high redshift , 2013, 1306.1238.

[38]  Michael C. Cooper,et al.  THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES , 2012, 1203.1651.

[39]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[40]  E. Komatsu,et al.  Cosmic shears should not be measured in conventional ways , 2010, 1002.3615.

[41]  Gary M. Bernstein,et al.  Shape measurement biases from underfitting and ellipticity gradients , 2010, 1001.2333.

[42]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[43]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[44]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[45]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[46]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[47]  R. Massey,et al.  Weak gravitational shear and flexion with polar shapelets , 2006, astro-ph/0609795.

[48]  P. Madau,et al.  A New Nonparametric Approach to Galaxy Morphological Classification , 2003, astro-ph/0311352.

[49]  C. Conselice The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003, astro-ph/0303065.

[50]  R. Massey,et al.  Image simulation with shapelets , 2003, astro-ph/0301449.

[51]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[52]  G. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001, astro-ph/0107431.

[53]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[54]  Shumeet Baluja,et al.  Advances in Neural Information Processing , 1994 .