Regression model for stabilization energies associated with anion ordering in perovskite-type oxynitrides

Abstract Certain perovskite-type oxynitrides have bandgaps suitable for renewable hydrogen production via photocatalytic and photoelectrochemical water splitting under visible light. Understanding the ordering of oxide and nitride anions in these materials is important because this ordering affects their semiconductor properties. However, the numerous possible orderings complicate systematic analyses based on density functional theory (DFT) calculations using defined elemental arrangements. This work shows that anion ordering in large-scale supercells within perovskite-type oxynitrides can be rapidly predicted based on machine learning, using BaNbO2N (capable of oxidizing water under irradiation up to 740 nm) as an example. Machine learning allows the calculation of the total energy of BaNbO2N directly from randomly selected initial atomic placements without costly structural optimization, thus reducing the computational cost by more than 99.99%. Combined with the Metropolis Monte Carlo method, machine learning permits exploration of the stable anion orderings of large supercells without costly DFT calculations. This work therefore demonstrates a means of predicting the properties of functional materials having complex compositions based on the most realistic elemental arrangements in conjunction with reasonable computational loads.

[1]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[2]  P. Woodward,et al.  Local Atomic Ordering in BaTaO2N Studied by Neutron Pair Distribution Function Analysis and Density Functional Theory , 2007 .

[3]  K. Domen,et al.  Photoelectrochemical Water Splitting on Particulate ANbO2N (A = Ba, Sr) Photoanodes Prepared from Perovskite-Type ANbO3 , 2016 .

[4]  Kazuhiko Maeda,et al.  Photocatalytic water splitting using semiconductor particles: History and recent developments , 2011 .

[5]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[6]  Atsuto Seko,et al.  Cluster expansion of multicomponent ionic systems with controlled accuracy: importance of long-range interactions in heterovalent ionic systems , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[8]  K. Domen,et al.  Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands. , 2011, ChemSusChem.

[9]  K. Domen,et al.  Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm , 2013 .

[10]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[11]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[12]  A. B. Jorge,et al.  Anion order in perovskite oxynitrides. , 2011, Nature chemistry.

[13]  M. T. Casais,et al.  Preparation, neutron structural study and characterization of BaNbo3: A Pauli-like metallic perovskite , 1995 .

[14]  A. Kudo,et al.  Water Splitting into H 2 and O 2 on Alkali Tantalate Photocatalysts ATaO 3 (A = Li, Na, and K) , 2001 .

[15]  A. Fuertes Chemistry and applications of oxynitride perovskites , 2012 .

[16]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[17]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[18]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[19]  Thomas F. Jaramillo,et al.  New cubic perovskites for one- and two-photon water splitting using the computational materials repository , 2012 .

[20]  Yue Liu,et al.  Materials discovery and design using machine learning , 2017 .

[21]  K. Domen,et al.  Oxysulfides Ln2Ti2S2O5 as Stable Photocatalysts for Water Oxidation and Reduction under Visible-Light Irradiation , 2004 .

[22]  A. Van der Ven,et al.  Machine-learning the configurational energy of multicomponent crystalline solids , 2018, npj Computational Materials.

[23]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[24]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[25]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  C. Tai,et al.  Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb) , 2004 .

[27]  Kristin A. Persson,et al.  First principles high throughput screening of oxynitrides for water-splitting photocatalysts , 2013 .

[28]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[29]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[30]  Sánchez,et al.  Cluster expansions and the configurational energy of alloys. , 1993, Physical review. B, Condensed matter.

[31]  G. Pilania,et al.  Machine learning bandgaps of double perovskites , 2016, Scientific Reports.

[32]  Roger Marchand,et al.  Local structure and electronic properties of BaTaO2N with perovskite-type structure , 2003 .

[33]  Juan M Sanchez,et al.  Cluster expansion and the configurational theory of alloys , 2010 .

[34]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[35]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[36]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[37]  X. D. Xu,et al.  Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis , 2014 .

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  Wei Li,et al.  Predicting the thermodynamic stability of perovskite oxides using machine learning models , 2018, Computational Materials Science.

[40]  Richard Dronskowski,et al.  First‐principles and molecular‐dynamics study of structure and bonding in perovskite‐type oxynitrides ABO2N (A = Ca, Sr, Ba; B = Ta, Nb) , 2008, J. Comput. Chem..

[41]  S. Oishi,et al.  Template-Assisted Size Control of Polycrystalline BaNbO2N Particles and Effects of Their Characteristics on Photocatalytic Water Oxidation Performances , 2018 .

[42]  P. Sautet,et al.  Photophysical Properties of SrTaO2N Thin Films and Influence of Anion Ordering: A Joint Theoretical and Experimental Investigation , 2017 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  K. Yamashita,et al.  Anion Ordering in CaTaO2N: Structural Impact on the Photocatalytic Activity. Insights from First-Principles , 2017 .

[45]  Swapan K. Ghosh,et al.  Enhancement of Visible Light Photocatalytic Activity of SrTiO3: A Hybrid Density Functional Study , 2015 .

[46]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.