Ring current effects on nuclear magnetic shielding of carbon in the benzene molecule

The differential Biot–Savart law of classical electrodynamics was applied to develop a ring current model for the magnetic shielding of the carbon nucleus in benzene. It is shown that the local effect of the π currents, induced by a magnetic field normal to the molecular plane, on the $\sigma_{\|}^{\rm C}$ out‐of‐plane shielding tensor component vanishes. However, approximately 10% of $\sigma_{\|}^{\rm C}$ is due to the shielding contributions from π current density in the region of the other carbon atoms. Magnetic shielding density maps obtained via quantum mechanical procedures confirm the predictions of the classical model. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  P. Lazzeretti,et al.  Ring-current models from the differential Biot-Savart law. , 2004, Organic letters.

[3]  P. Lazzeretti,et al.  Are ring currents still useful to rationalize the benzene proton magnetic shielding? , 2004, Organic letters.

[4]  M. B. Ferraro,et al.  Understanding proton magnetic shielding in the benzene molecule , 2004 .

[5]  P. Lazzeretti Assessment of aromaticity via molecular response properties , 2004 .

[6]  P. Schleyer,et al.  How do ring currents affect (1)h NMR chemical shifts? , 2003, Organic letters.

[7]  A. Soncini,et al.  The leap-frog effect of ring currents in benzene. , 2002, Journal of the American Chemical Society.

[8]  R. Zanasi Coupled Hartree–Fock calculations of molecular magnetic properties annihilating the transverse paramagnetic current density , 1996 .

[9]  R. Bader,et al.  Properties of atoms in molecules: nuclear magnetic shielding , 1996 .

[10]  M. Malagoli,et al.  Coupled Hartree–Fock calculations of origin‐independent magnetic properties of benzene molecule , 1995 .

[11]  S. Sauer,et al.  Correlated and gauge origin independent calculations of magnetic properties , 1994 .

[12]  Paolo Lazzeretti,et al.  IGLO STUDY OF BENZENE AND SOME OF ITS ISOMERS AND RELATED MOLECULES. SEARCH FOR EVIDENCE OF THE RING CURRENT MODEL , 1994 .

[13]  M. Malagoli,et al.  Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density , 1994 .

[14]  Todd A. Keith,et al.  Calculation of magnetic response properties using a continuous set of gauge transformations , 1993 .

[15]  A. Jameson,et al.  Gas-phase 13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for 13C , 1987 .

[16]  P. Lazzeretti,et al.  The validity of Musher's model for the magnetic properties of aromatic molecules , 1983 .

[17]  C. Jameson,et al.  Molecular electronic property density functions: The nuclear magnetic shielding density , 1980 .

[18]  C. Jameson,et al.  Nuclear magnetic shielding density , 1979 .

[19]  J. Hirschfelder Quantum mechanical equations of change. I , 1978 .

[20]  G. Englert 13C-NMR Chemical Shift Anisotropy in Benzene-l-13C , 1972 .

[21]  C. Wilcox,et al.  Use of a model for the ring-current effect in analysis of the nuclear magnetic resonance spectra of di- and triphenylcyclopropenium ions , 1967 .

[22]  G. Diercksen,et al.  Self‐Consistent Perturbation Theory. I. General Formulation and Some Applications , 1966 .

[23]  J. Waugh,et al.  Additions and Corrections: Nuclear Resonance Spectra of Hydrocarbons: the Free Electron Model. , 1958 .

[24]  F. Bovey,et al.  Calculation of Nuclear Magnetic Resonance Spectra of Aromatic Hydrocarbons , 1958 .

[25]  B. P. Dailey,et al.  Magnetic Shielding and Susceptibility Anisotropies , 1974 .