Milky Way dust extinction measured with QSOs

We investigate reddening by Milky Way dust in the low-extinction regime of $E_{B-V}<0.15$. Using over 50,000 QSOs at $0.5<z<2.5$ from the SDSS DR7 QSO Catalogue we probe the residual SDSS colours after dereddening and correcting for the known spectroscopic redshifts. We find that the extinction vector of Schlafly & Finkbeiner (2011) is a better fit to the data than that used by Schlegel et al. (1998, SFD). There is evidence for a non-linearity in the SFD reddening map, which is similarly present in the V1.2 map of the Planck Collaboration. This non-linearity is similarly seen when galaxies or stars are used as probes of the SFD map.

[1]  Eugene Magnier,et al.  MEASURING DISTANCES AND REDDENINGS FOR A BILLION STARS: TOWARD A 3D DUST MAP FROM PAN-STARRS 1 , 2014, 1401.1508.

[2]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[3]  Ž. Ivezić,et al.  THE BLUE TIP OF THE STELLAR LOCUS: MEASURING REDDENING WITH THE SLOAN DIGITAL SKY SURVEY , 2010, 1009.4933.

[4]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[5]  E. Mortsell Calibrating Milky Way dust extinction using cosmological sources , 2012, 1210.2191.

[6]  T. Broadhurst,et al.  The Effect of FIR Emission from SDSS Galaxies on the SFD Galactic Extinction Map , 2006, astro-ph/0607098.

[7]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[8]  Andrew J. Connolly,et al.  THE MILKY WAY TOMOGRAPHY WITH SLOAN DIGITAL SKY SURVEY. IV. DISSECTING DUST , 2012 .

[9]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[10]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[11]  D. Schlegel,et al.  Detection of a Far IR Excess with DIRBE at 60 and 100 Microns , 2001 .

[12]  J.E.G. Peek Ultraviolet Extinction at High Galactic Latitudes II: The Ultraviolet Extinction Function , 2013 .

[13]  M. Fukugita,et al.  Measuring the galaxy–mass and galaxy–dust correlations through magnification and reddening , 2009, 0902.4240.

[14]  Y. Suto,et al.  Detection of Far-Infrared Emission from Galaxies and Quasars in the Galactic Extinction Map by Stacking Analysis , 2012, 1212.0307.

[15]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[16]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[17]  G. Graves,et al.  A CORRECTION TO THE STANDARD GALACTIC REDDENING MAP: PASSIVE GALAXIES AS STANDARD CRAYONS , 2010, 1006.3310.

[18]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[19]  H. Rix,et al.  A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1 , 2014, 1405.2922.

[20]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[21]  David J. Schlegel,et al.  Detection of a Far-Infrared Excess with DIRBE at 60 and 100 Microns , 2000, astro-ph/0004175.

[22]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[23]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[24]  Michael S. Bessell,et al.  SkyMapper and the Southern Sky Survey , 2008 .

[25]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.