The existence of utility functions for weakly continuous preferences on a Banach space

Abstract In this note we prove that the weak topology of a Banach space has the Continuous Representability Property which means that every (weakly) continuous total preorder defined on a Banach space can be represented by a weakly continuous utility function. This shows that weak topologies are perfect to look for continuous utility functions that represent preferences on infinite-dimensional commodity spaces.

[1]  Andreu Mas-Colell,et al.  A model of equilibrium with differentiated commodities , 1975 .

[2]  Andreu Mas-Colell,et al.  The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .

[3]  Margarita Estévez Toranzo,et al.  On the existence of continuous preference orderings without utility representations , 1995 .

[4]  William R. Zame,et al.  Chapter 34 Equilibrium theory in infinite dimensional spaces , 1991 .

[5]  G. Debreu ON THE CONTINUITY PROPERTIES OF PARETIAN UTILITY , 1963 .

[6]  Fred Galvin,et al.  Chain conditions and products , 1980 .

[7]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[8]  Gerhard Herden,et al.  Useful topologies and separable systems , 2000 .

[9]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[10]  William R. Zame,et al.  NONATOMIC ECONOMIES AND THE BOUNDARIES OF PERFECT COMPETITION , 1994 .

[11]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[12]  K. Ciesielski Set Theory for the Working Mathematician: Natural numbers, integers, and real numbers , 1997 .

[13]  G. Herden,et al.  Topological spaces for which every continuous total preorder can be represented by a continuous utility function , 1991 .

[14]  Stevo Todorcevic Chain-condition methods in topology , 2000 .

[15]  Juan Carlos Candeal,et al.  Utility functions on locally connected spaces , 2004 .

[16]  H. Corson,et al.  The weak topology of a Banach space , 1961 .

[17]  M. Day,et al.  Normed Linear Spaces , 1960 .

[18]  Ward Cheney,et al.  Normed Linear Spaces , 2001 .

[19]  A. Beardon,et al.  The non-existence of a utility function and the structure of non-representable preference relations , 2002 .

[20]  Lynn Arthur Steen,et al.  Counterexamples in Topology , 1970 .

[21]  Larry E. Jones,et al.  Existence of equilibria with infinitely many commodities : Banach lattices reconsidered , 1987 .

[22]  William R. Zame,et al.  Edgeworth's conjecture with infinitely many commodities: commodity differentiation , 1998 .

[23]  T. Bewley Existence of equilibria in economies with infinitely many commodities , 1972 .

[24]  Juan Carlos Candeal,et al.  Methods in Banach Space Theory: Ordinal representability in Banach spaces , 2006 .

[25]  Juan Carlos Candeal,et al.  Some results on representation and extension of preferences , 1998 .

[26]  Charalambos D. Aliprantis,et al.  Equilibria in markets with a Riesz space of commodities , 1983 .

[27]  P. Malliavin Infinite dimensional analysis , 1993 .

[28]  Paulo Klinger Monteiro,et al.  Some results on the existence of utility functions on path connected spaces , 1987 .

[29]  William R. Zame,et al.  Edgeworth's Conjecture with Infinitely Many Commodities , 1997 .

[30]  Juan Carlos Candeal,et al.  Order preserving functions on ordered topological vector spaces , 1999, Bulletin of the Australian Mathematical Society.

[31]  David Lutzer,et al.  ORDERED TOPOLOGICAL SPACES , 1980 .