Least‐squares method for the Oseen equation

This article studies the least-squares finite element method for the linearized, stationary Navier‐Stokes equation based on the stress-velocity-pressure formulation in d dimensions (d = or 3). The least-squares functional is simply defined as the sum of the squares of the L 2 norm of the residuals. It is shown that the homogeneous least-squares functional is elliptic and continuous in the H(div; !) d × H 1 (!) d × L 2 (!) norm. This immediately implies that the a priori error estimate of the conforming least-squares finite element approximation is optimal in the energy norm. The L 2 norm error estimate for the velocity is also established through a refined duality argument. Moreover, when the right-hand side f belongs only to L 2 (!) d , we derive an a priori error bound in a weaker norm, that is, the L 2 (!) d×d × H 1 (!) d × L 2 (!) norm. © 2016 Wiley

[1]  Zhiqiang Cai,et al.  The L2 Norm Error Estimates for the Div Least-Squares Method , 2006, SIAM J. Numer. Anal..

[2]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[3]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[4]  Ping Wang,et al.  Least-Squares Methods for Incompressible Newtonian Fluid Flow: Linear Stationary Problems , 2004, SIAM J. Numer. Anal..

[5]  Zhiqiang Cai,et al.  Optimal Error Estimate for the Div Least-squares Method with Data f∈L2 and Application to Nonlinear Problems , 2010, SIAM J. Numer. Anal..

[6]  B. Jiang The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .

[7]  Zhiqiang Cai,et al.  A Multigrid Method for the Pseudostress Formulation of Stokes Problems , 2007, SIAM J. Sci. Comput..

[8]  Pavel B. Bochev,et al.  Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations , 1995 .

[9]  J. Pasciak,et al.  Least-squares methods for Stokes equations based on a discrete minus one inner product , 1996 .

[10]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[13]  Suh-Yuh Yang,et al.  On the velocity-vorticity-pressure least-squares finite element method for the stationary incompressible Oseen problem , 2005 .

[14]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[15]  R. B. Kellogg,et al.  Least Squares Methods for Elliptic Systems , 1985 .

[16]  M. Gunzburger,et al.  Analysis of least squares finite element methods for the Stokes equations , 1994 .

[17]  T. A. Manteuffel,et al.  First-Order System Least Squares for Velocity-Vorticity-Pressure Form of the Stokes Equations, with Application to Linear Elasticity , 1996 .

[18]  Dan-Ping Yang,et al.  Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems , 2000, Math. Comput..

[19]  Thomas A. Manteuffel,et al.  First‐order system least squares for the Oseen equations , 2006, Numer. Linear Algebra Appl..

[20]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[21]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[22]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[23]  T. Manteuffel,et al.  First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .

[24]  Zhiqiang Cai,et al.  First-Order System Least Squares for the Stress-Displacement Formulation: Linear Elasticity , 2003, SIAM J. Numer. Anal..

[25]  O. Karakashian On a Galerkin--Lagrange Multiplier Method for the Stationary Navier--Stokes Equations , 1982 .