A simple recipe for making accurate parametric inference in finite sample

The algorithmic principle of the bootstrap method is quite simple: reiterate the mechanism that produces an estimator on pseudo-samples. But when it comes to estimators that are numerically complicated to obtain, the bootstrap is less attractive to use due to the numerical burden. If one estimator is hard to find, reiterating compounds this issue. Paraphrasing Emile in the French comedy La Cite de la Peur: we can implement the bootstrap when the estimator is simple to obtain or we can compute a numerically complex point estimator, but it is too computationally cumbersome to do both.

[1]  I. Moustaki,et al.  Bounded-Influence Robust Estimation in Generalized Linear Latent Variable Models , 2004 .

[2]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[3]  K. Heggland,et al.  Estimating functions in indirect inference , 2004 .

[4]  D. Fraser,et al.  Second order ancillary: A differential view from continuity , 2010, 1011.5779.

[5]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[6]  Benedikt M. Pötscher,et al.  Generic uniform convergence and equicontinuity concepts for random functions: An exploration of the basic structure , 1994 .

[7]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[8]  Christian Gourieroux,et al.  Indirect Inference for Dynamic Panel Models , 2006 .

[9]  P. Phillips,et al.  Simulation-Based Estimation of Contingent-Claims Prices , 2007 .

[10]  S. Kotz,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .

[11]  M. Stone,et al.  Marginalization Paradoxes in Bayesian and Structural Inference , 1973 .

[12]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[13]  Stephan Morgenthaler,et al.  Robust weighted likelihood estimators with an application to bivariate extreme value problems , 2002 .

[14]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[15]  W. Newey,et al.  Uniform Convergence in Probability and Stochastic Equicontinuity , 1991 .

[16]  Jan Hannig,et al.  ON GENERALIZED FIDUCIAL INFERENCE , 2009 .

[17]  Marco J. Lombardi Indirect estimation of α-stable stochastic volatility models , 2005 .

[18]  D. Pollard Convergence of stochastic processes , 1984 .

[19]  John A. Nelder,et al.  Generalized Linear Models , 1989 .

[20]  S. Lang Real and Functional Analysis , 1983 .

[21]  J. Lindeberg Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .

[22]  K. Singh,et al.  Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review , 2013 .

[23]  Ryan T. Godwin,et al.  On the Bias of the Maximum Likelihood Estimator for the Two-Parameter Lomax Distribution , 2013 .

[24]  Jan Hannig,et al.  Computational issues of generalized fiducial inference , 2014, Comput. Stat. Data Anal..

[25]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[26]  F. Downton,et al.  Introduction to Mathematical Statistics , 1959 .

[27]  Chuanhai Liu,et al.  DEMPSTER-SHAFER INFERENCE WITH WEAK BELIEFS , 2011 .

[28]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[29]  A. Gallant,et al.  Simulated Score Methods and Indirect Inference for Continuous-time Models , 2002 .

[30]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[31]  R. Bailey Polar generation of random variates with the t -distribution , 1994 .

[32]  T. Cai,et al.  One-sided confidence intervals in discrete distributions , 2005 .

[33]  Rory A. Fisher,et al.  Statistical methods and scientific inference. , 1957 .

[34]  K. Lomax Business Failures: Another Example of the Analysis of Failure Data , 1954 .

[35]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[36]  T. E. Sterne,et al.  Inverse Probability , 1930, Nature.

[37]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[38]  D. Andrews Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables , 1988, Econometric Theory.

[39]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[40]  Yanyuan Ma,et al.  Simulation-Based Bias Correction Methods for Complex Models , 2018, Journal of the American Statistical Association.

[41]  E. Ronchetti,et al.  Robust methods for personal-income distribution models† , 1994 .

[42]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[43]  David Lindley,et al.  Fiducial Distributions and Bayes' Theorem , 1958 .

[44]  Eric Renault,et al.  Estimation of Stable Distributions by Indirect Inference , 2009 .

[45]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[46]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[47]  Alain Guay,et al.  Indirect inference and calibration of dynamic stochastic general equilibrium models , 2007 .

[48]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[49]  W. Rudin Principles of mathematical analysis , 1964 .

[50]  Anthony N. Pettitt,et al.  Bayesian indirect inference using a parametric auxiliary model , 2015, 1505.03372.

[51]  Yinglin Xia,et al.  The Mean Value Theorem and Taylor’s Expansion in Statistics , 2013 .

[52]  M. Beaumont Approximate Bayesian Computation in Evolution and Ecology , 2010 .

[53]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[54]  Carl M. Harris,et al.  Fundamentals of queueing theory , 1975 .

[55]  Rory A. Fisher,et al.  The concepts of inverse probability and fiducial probability referring to unknown parameters , 1933 .

[56]  David T. Frazier,et al.  Asymptotic properties of approximate Bayesian computation , 2016, Biometrika.

[57]  S. Tavaré,et al.  Dating primate divergences through an integrated analysis of palaeontological and molecular data. , 2011, Systematic biology.

[58]  Wenxin Jiang,et al.  The Indirect Method: Inference Based on Intermediate Statistics—A Synthesis and Examples , 2004 .

[59]  M. Victoria-Feser,et al.  On the Properties of Simulation-based Estimators in High Dimensions , 2018, 1810.04443.

[60]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[61]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[62]  N. Hjort,et al.  Confidence and Likelihood * , 2002 .

[63]  Maurice G. Kendall,et al.  The Advanced Theory of Statistics, Vol. 2: Inference and Relationship , 1979 .

[64]  A. M. Mathai,et al.  Quadratic forms in random variables : theory and applications , 1992 .

[65]  R. Palais Natural operations on differential forms , 1959 .

[66]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.

[67]  W. Wu,et al.  Asymptotic theory for stationary processes , 2011 .

[68]  Ryan Martin,et al.  Conditional inferential models: combining information for prior‐free probabilistic inference , 2012, 1211.1530.

[69]  K. Koch Introduction to Bayesian Statistics , 2007 .

[70]  Jean-Marie Cornuet,et al.  Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation , 2008, Bioinform..

[71]  D. Fraser The Structure of Inference. , 1969 .

[72]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[73]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[74]  J. Zakoian,et al.  QUASI-INDIRECT INFERENCE FOR DIFFUSION PROCESSES , 1998, Econometric Theory.

[75]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[76]  G. Peters,et al.  A Note on Target Distribution Ambiguity for Likelihood-Free Samplers (ABC) , 2010 .

[77]  Jiming Jiang Linear and Generalized Linear Mixed Models and Their Applications , 2007 .

[78]  Ryan Martin Plausibility Functions and Exact Frequentist Inference , 2012, 1203.6665.

[79]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Grace Y. Yi,et al.  Default priors for Bayesian and frequentist inference , 2010 .

[81]  Anthony A. Smith,et al.  Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions , 1993 .

[82]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .

[83]  Liu Wen An analytic technique to prove Borel's strong law of large numbers , 1991 .

[84]  Chiara Monfardini,et al.  Estimating Stochastic Volatility Models Through Indirect Inference , 1998 .

[85]  Robert E. Kass,et al.  Formal rules for selecting prior distributions: A review and annotated bibliography , 1993 .

[86]  L. E. Clarke,et al.  Probability and Measure , 1980 .

[87]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[88]  Randy C. S. Lai,et al.  Generalized Fiducial Inference: A Review and New Results , 2016 .

[89]  Paul Fearnhead,et al.  Constructing Summary Statistics for Approximate Bayesian Computation: Semi-automatic ABC , 2010, 1004.1112.

[90]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[91]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[92]  Minge Xie,et al.  Combining information from independent sources through confidence distributions , 2005, math/0504507.

[93]  Chuanhai Liu,et al.  Inferential Models: A Framework for Prior-Free Posterior Probabilistic Inference , 2012, 1206.4091.

[94]  Gregory William Bennett,et al.  The fiducial argument in statistical inference , 1965 .

[95]  Minge Xie,et al.  Confidence Distributions and a Unifying Framework for Meta-Analysis , 2011 .

[96]  M. Cristea On global implicit function theorem , 2017 .

[97]  C. Field,et al.  Robust Estimation - a Weighted Maximum-Likelihood Approach , 1994 .

[98]  Jan Hannig Generalized fiducial inference via discretization , 2013 .

[99]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[100]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[101]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[102]  Piero Veronese,et al.  Fiducial and Confidence Distributions for Real Exponential Families , 2015 .

[103]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[104]  Arthur P. Dempster,et al.  The Dempster-Shafer calculus for statisticians , 2008, Int. J. Approx. Reason..

[105]  S. A. Sisson,et al.  A note on target distribution ambiguity of likelihood-free samplers , 2010 .