Estimating the largest singular values of large sparse matrices via modified moments

We describe a procedure for determining a few of the largest singular values of a large sparse matrix. The method by Golub and Kent which uses the method of modified moments for estimating the eigenvalues of operators used in iterative methods for the solution of linear systems of equations is appropriately modified in order to generate a sequence of bidiagonal matrices whose singular values approximate those of the original sparse matrix. A simple Lanczos recursion is proposed for determining the corresponding left and right singular vectors. The potential asynchronous computation of the bidiagonal matrices using modified moments with the iterations of an adapted Chebyshev semi-iterative (CSI) method is an attractive feature for parallel computers. Comparisons in efficiency and accuracy with an appropriate Lanczos algorithm (with selective re-orthogonalization) are presented on large sparse (rectangular) matrices arising from applications such as information retrieval and seismic reflection tomography. This procedure is essentially motivated by the theory of moments and Gauss quadrature.

[1]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[2]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[3]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[4]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[5]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[6]  B. Parlett,et al.  The Lanczos algorithm with selective orthogonalization , 1979 .

[7]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[8]  Franklin T. Luk,et al.  A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.

[9]  W. Gautschi On Generating Orthogonal Polynomials , 1982 .

[10]  Iain S. Duff,et al.  Sparse matrix test problems , 1982 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  H. Simon Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .

[13]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[14]  R. P. Bording,et al.  Applications of seismic travel-time tomography , 1987 .

[15]  S. T. Dumais,et al.  Using latent semantic analysis to improve access to textual information , 1988, CHI '88.

[16]  Joos Vandewalle,et al.  A variety of applications of singular value decomposition in identification and signal processing , 1989 .

[17]  J. Scales,et al.  Robust methods in inverse theory , 1988 .

[18]  G. Golub,et al.  Estimates of Eigenvalues for Iterative Methods , 1989 .

[19]  J. Scales,et al.  Regularisation of nonlinear inverse problems: imaging the near-surface weathering layer , 1990 .

[20]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[21]  Michael W. Berry Multiprocessor sparse SVD algorithms and applications , 1991 .

[22]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[23]  B. AfeArd CALCULATING THE SINGULAR VALUES AND PSEUDOINVERSE OF A MATRIX , 2022 .