The generalized version of Jun's cubic sets in semigroups

In this paper, we define the concept of generalized cubic subsemigroups (ideals) of a semigroup and investigate some of its related properties. In particular, we introduce the concept of $(\in _{(\widetilde{\gamma }_{1},\gamma _{2}) },\in _{(\widetilde{\gamma}_{1},\gamma _{2}) }\vee q_{(\widetilde{\delta }_{1},\delta _{2})})$-cubic ideal, $(\in _{( \widetilde{\gamma }_{1},\gamma _{2}) },\in _{(\widetilde{\gamma }_{1},\gamma _{2}) }\vee q_{(\widetilde{\delta }_{1},\delta _{2}) })$-cubic quasi-ideal, $(\in _{( \widetilde{\gamma }_{1},\gamma _{2}) },\in _{(\widetilde{\gamma }_{1},\gamma _{2}) }\vee q_{( \widetilde{\delta }_{1},\delta _{2})})$-cubic bi-ideal and $(\in _{( \widetilde{\gamma }_{1},\gamma _{2})},\in _{(\widetilde{\gamma } _{1},\gamma _{2})}\vee q_{(\widetilde{\delta }_{1},\delta _{2})})$-cubic prime/semiprime ideal of a semigroup.

[1]  Sultan Yamak,et al.  Generalized fuzzy bi-ideals of semigroups , 2008, Soft Comput..

[2]  Asghar Khan,et al.  On fuzzy fully regular ordered AG\mathcal{AG}-groupoids , 2014, J. Intell. Fuzzy Syst..

[3]  N. Kuroki Fuzzy bi-ideals in semigroups , 1980 .

[4]  Asghar Khan,et al.  Ordered semigroups characterized by interval valued (ε, ε Ú\vee q)-fuzzy bi-ideals , 2013, J. Intell. Fuzzy Syst..

[5]  Sandor Lajos,et al.  A Note on Intra-regular Semigroups , 1963 .

[6]  Jianming Zhan,et al.  A new view of fuzzy k-ideals of hemirings , 2012, J. Intell. Fuzzy Syst..

[7]  Bijan Davvaz,et al.  (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals , 2006, Soft Comput..

[8]  Young Bae Jun,et al.  Generalizations of (e, e or q)-fuzzy subalgebras in BCK/BCI-algebras , 2009, Comput. Math. Appl..

[9]  Sandeep Kumar Bhakat,et al.  (ε ∨ Q)-level Subset , 1999, Fuzzy Sets Syst..

[10]  Jianming Zhan,et al.  Characterizations of fuzzy soft Γ-hemirings , 2014, J. Intell. Fuzzy Syst..

[11]  Y. Jun,et al.  Ordered semigroups characterized by interval valued (∈, ∈∨ q)-fuzzy bi-ideals , 2013 .

[12]  Naveed Yaqoob,et al.  On Cubic KU-Ideals of KU-Algebras , 2013 .

[13]  Pu Pao-Ming,et al.  Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence , 1980 .

[14]  Young Bae Jun,et al.  Filters of ordered semigroups based on the fuzzy points , 2013, J. Intell. Fuzzy Syst..

[15]  Jianming Zhan,et al.  Falling fuzzy ideals of hemirings , 2013, J. Intell. Fuzzy Syst..

[16]  Bijan Davvaz,et al.  A note on fuzzy ordered AG-groupoids , 2014, J. Intell. Fuzzy Syst..

[17]  Young Bae Jun,et al.  Semigroups characterized by (C,C,νqk)-fuzzy ideals , 2010 .

[18]  S. K. Bhakat,et al.  Fuzzy subrings and ideals redefined , 1996, Fuzzy Sets Syst..

[19]  Niovi Kehayopulu,et al.  On Intra-regular Ordered Semigroups , 1993 .

[20]  Venkat Murali,et al.  Fuzzy points of equivalent fuzzy subsets , 2004, Inf. Sci..

[21]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[22]  Young Bae Jun,et al.  Generalized fuzzy interior ideals in semigroups , 2006, Inf. Sci..

[23]  M. Mathematical,et al.  Characterization of Ordered Semigroups in Terms of Fuzzy Soft Ideals , 2012 .

[24]  S. K. Bhakat,et al.  (ε Ɛ V Q)-fuzzy Subgroup , 1996, Fuzzy Sets Syst..

[25]  Jianming Zhan,et al.  Generalized fuzzy polygroups endowed with interval valued membership functions , 2008, J. Intell. Fuzzy Syst..

[26]  Sandeep Kumar Bhakat,et al.  (∈, ∈∨q)-fuzzy Normal, Quasinormal and Maximal Subgroups , 2000, Fuzzy Sets Syst..

[27]  Muhammad Shabir,et al.  Some characterizations of ternary semigroups by the properties of their $\left \in _{\gamma },\in _{\gamma }\vee q_{\delta }\right$-fuzzy ideals , 2014 .

[28]  Young Bae Jun,et al.  Cubic structures applied to ideals of BCI-algebras , 2011, Comput. Math. Appl..

[29]  C. L. Chang,et al.  Fuzzy topological spaces , 1968 .