Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles.

The relationship between the equations used in the atomic pair distribution function (PDF) method and those commonly used in small-angle-scattering (SAS) analyses is explicitly shown. The origin of the sloping baseline, -4pirrho0, in PDFs of bulk materials is identified as originating from the SAS intensity that is neglected in PDF measurements. The nonlinear baseline in nanoparticles has the same origin, and contains information about the shape and size of the nanoparticles.

[1]  Yang Ren,et al.  Structure of nanocrystalline GaN from X-ray diffraction, Rietveld and atomic pair distribution function analyses , 2005 .

[2]  R. Neder,et al.  Exact model calculations of the total radial distribution functions for the X‐ray diffraction case and systems of complicated chemical composition , 2005 .

[3]  A. Wright Diffraction studies of glass structure : The first 70 years , 1998 .

[4]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[5]  IFO: a Program for Image-Reconstruction-Type Calculation of Atomic Distribution Functions for Disordered Materials , 1998 .

[6]  R. Dinnebier,et al.  Powder diffraction : theory and practice , 2008 .

[7]  P. Lugol Annalen der Physik , 1906 .

[8]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  R. Silver,et al.  Hydrogen-hydrogen pair correlation function in liquid water , 1982 .

[10]  E Pantos,et al.  Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. , 1998, Biophysical journal.

[11]  Michael Thorpe,et al.  Local structure from diffraction , 2002 .

[12]  Simon J. L. Billinge,et al.  PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .

[13]  Finite size effects of nanoparticles on the atomic pair distribution functions. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[14]  P. Goudeau,et al.  Scattering of X-rays , 1995 .

[15]  Richardson,et al.  Structure of Al-Mn-Cr-Si quasicrystals studied by pulsed neutron scattering. , 1987, Physical review. B, Condensed matter.

[16]  A. Bhalla,et al.  Diffraction studies of local atomic structure in ferroelectric and superconducting oxides , 1991 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  K. Hagen,et al.  Stereochemical applications of gas-phase electron diffraction. Parts A and B edited by I. Hargittai and M. Hargittai , 1989 .

[19]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[20]  Takagi,et al.  Local octahedral tilts in La2-xBaxCuO4: Evidence for a new structural length scale. , 1994, Physical review letters.

[21]  B. Gilbert Finite size effects on the real-space pair distribution function of nanoparticles , 2008 .

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[24]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[25]  A. Wright,et al.  A neutron diffraction investigation of the structure of vitreous boron trioxide , 1982 .

[26]  Feng Huang,et al.  Nanoparticles: Strained and Stiff , 2004, Science.

[27]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[28]  P. Chupas,et al.  3-D Structure of Nanosized Catalysts by High-Energy X-ray Diffraction and Reverse Monte Carlo Simulations: Study of Ru , 2007 .

[29]  L. Alexander,et al.  X-ray diffraction procedures , 1954 .

[30]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[31]  W. Ehrenberg,et al.  Small-Angle X-Ray Scattering , 1952, Nature.

[32]  A. Soper,et al.  Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  S. Shastri,et al.  Studies of local and intermediate range structure in crystalline and amorphous materials at high pressure using high-energy X-rays , 2007, Powder Diffraction.

[34]  Martin T. Dove,et al.  Application of the reverse Monte Carlo method to crystalline materials , 2001 .

[35]  L. Alexander,et al.  X-Ray diffraction procedures for polycrystalline and amorphous materials , 1974 .

[36]  D. Muller,et al.  The structure of the C70 molecule , 1992, Nature.

[37]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[38]  M. Terrones,et al.  Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction , 2004 .

[39]  Yang Ren,et al.  Structure of Nanocrystalline Alkali Metal Manganese Oxides by the Atomic Pair Distribution Function Technique , 2004 .

[40]  Brian H. Toby,et al.  Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials , 1992 .

[41]  Antonietta Guagliardi,et al.  On the efficient evaluation of Fourier patterns for nanoparticles and clusters , 2006, J. Comput. Chem..

[42]  H. Oberhammer,et al.  I. Hargittai, M. Hargittai (Eds.): The Electron Diffraction Technique, Part A von: Stereochemical Applications of Gas‐Phase Electron Diffraction, VCH Verlagsgesellschaft, Weinheim, Basel. Cambridge, New York 1988. 206 Seiten, Preis: DM 210,‐. , 1989 .

[43]  V. I. Korsunskii Shape of the peaks in radial distribution functions obtained from x-ray diffraction experiments in systems containing atoms of different kinds , 1985 .

[44]  T. Gerber,et al.  ATOMIC ORDERING IN CAX/2ALXSI1-XO2 GLASSES (X=0,0.34,0.5,0.68) BY ENERGY-DISPERSIVE X-RAY DIFFRACTION , 1998 .

[45]  J. Hanson,et al.  Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.

[46]  D. Keen A comparison of various commonly used correlation functions for describing total scattering , 2001 .

[47]  K. Lonsdale X-Ray Diffraction , 1971, Nature.

[48]  Simon J. L. Billinge,et al.  Quantum correction to the pair distribution function , 2007, J. Comput. Chem..

[49]  A. Hofmann,et al.  Aspects of the modelling of the radial distribution function for small nanoparticles , 2007 .

[50]  Keiske Kaji,et al.  X-Ray Diffraction Procedures , 1975 .

[51]  Dmitri I. Svergun,et al.  New developments in direct shape determination from small angle scattering , 1991 .

[52]  A. Wright Scientific opportunities for the study of amorphous solids using pulsed neutron sources , 1985 .

[53]  S. Billinge,et al.  Lattice dynamics and correlated atomic motion from the atomic pair distribution function , 2002, cond-mat/0209603.

[54]  S. Wong,et al.  Atomic-Scale Structure of Nanosized Titania and Titanate : Particles, Wires, and Tubes , 2007 .

[55]  C. L. Farrow,et al.  Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis , 2007, 0704.1288.

[56]  André Guinier,et al.  X-ray Crystallography. (Book Reviews: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies) , 1963 .