Item Parameter Estimation Via Marginal Maximum Likelihood and an EM Algorithm: A Didactic

The Bock and Aitkin (1981) Marginal Maximum Likelihood/EM approach to item parameter estimation is an alternative to the classical joint maximum likelihood procedure of item response theory. Unfortunately, the complexity of the underlying mathematics and the terse nature of the existing literature has made understanding of the approach difficult. To make the approach accessible to a wider audience, the present didactic paper provides the essential mathematical details of a marginal maximum likelihood/EM solution and shows how it can be used to obtain consistent item parameter estimates. For pedagogical purposes, a short BASIC computer program is used to illustrate the underlying simplicity of the method.

[1]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[2]  J. Berkson Application of the Logistic Function to Bio-Assay , 1944 .

[3]  Benjamin D. Wright,et al.  Solving measurement problems with the Rasch model. , 1977 .

[4]  M. Woodbury A missing information principle: theory and applications , 1972 .

[5]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[6]  Lalitha Sanathanan,et al.  The Logistic Model and Estimation of Latent Structure , 1978 .

[7]  Frank B. Baker,et al.  Methodology Review: Item Parameter Estimation Under the One-, Two-, and Three-Parameter Logistic Models , 1987 .

[8]  H. Swaminathan,et al.  Bayesian estimation in the two-parameter logistic model , 1985 .

[9]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  Erling B. Andersen,et al.  The Numerical Solution of a Set of Conditional Estimation Equations , 1972 .

[12]  L. J. Savage,et al.  Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics , 1949 .

[13]  J. Neyman,et al.  Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability , 1972 .

[14]  D. Rubin,et al.  On Jointly Estimating Parameters and Missing Data by Maximizing the Complete-Data Likelihood , 1983 .

[15]  J. Berkson Maximum Likelihood and Minimum x 2 Estimates of the Logistic Function , 1955 .

[16]  Hsin Ying Lin,et al.  Bayesian estimation of item response curves , 1986 .

[17]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[18]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[19]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[20]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[21]  Robert J. Mislevy,et al.  Bayes modal estimation in item response models , 1986 .

[22]  Robert J. Mislevy,et al.  Implementation of the EM Algorithm in the Estimation of Item Parameters: The BILOG Computer Program. , 1982 .

[23]  James O. Ramsay,et al.  Solving implicit equations in psychometric data analysis , 1975 .