A Framework for the Analysis of Second Order Projection Methods ∗

In this paper we present a common framework for projection methods for the solution of incompressible Navier-Stokes systems. We address through both analysis and numerical experiments how the pressure update effects the temporal order and stability, and explain some observations that have been reported in the literature.

[1]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[2]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[3]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[4]  Linda R. Petzold,et al.  Runge-Kutta-Chebyshev projection method , 2006, J. Comput. Phys..

[5]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[6]  Jie Shen,et al.  On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .

[7]  J. B. Perot,et al.  An analysis of the fractional step method , 1993 .

[8]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[9]  Jie Shen,et al.  On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..

[10]  Olivier Botella,et al.  On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time , 1997 .

[11]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[12]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[13]  Aaron L. Fogelson,et al.  Stability of approximate projection methods on cell-centered grids , 2005 .

[14]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[15]  J. Dukowicz,et al.  Approximate factorization as a high order splitting for the implicit incompressible flow equations , 1992 .

[16]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[17]  Yu-Xin Ren,et al.  A class of fully second order accurate projection methods for solving the incompressible Navier-Stokes equations , 2004 .

[18]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[19]  P. Houwen,et al.  On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .

[20]  R. Verzicco,et al.  A Finite-Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates , 1996 .

[21]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[22]  E Weinan,et al.  GAUGE METHOD FOR VISCOUS INCOMPRESSIBLE FLOWS , 2003 .

[23]  John B. Bell,et al.  Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..

[24]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[25]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[26]  Phillip Colella,et al.  An efficient second-order projection method for viscous incompressible flow , 1991 .

[27]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[28]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[29]  John B. Bell,et al.  A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..