A Framework for the Analysis of Second Order Projection Methods ∗
暂无分享,去创建一个
[1] M. Minion,et al. Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .
[2] Frans N. van de Vosse,et al. An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .
[3] R. Sani,et al. On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .
[4] Linda R. Petzold,et al. Runge-Kutta-Chebyshev projection method , 2006, J. Comput. Phys..
[5] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[6] Jie Shen,et al. On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .
[7] J. B. Perot,et al. An analysis of the fractional step method , 1993 .
[8] J. Szmelter. Incompressible flow and the finite element method , 2001 .
[9] Jie Shen,et al. On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..
[10] Olivier Botella,et al. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time , 1997 .
[11] P. Moin,et al. Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .
[12] Uri M. Ascher,et al. Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .
[13] Aaron L. Fogelson,et al. Stability of approximate projection methods on cell-centered grids , 2005 .
[14] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[15] J. Dukowicz,et al. Approximate factorization as a high order splitting for the implicit incompressible flow equations , 1992 .
[16] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[17] Yu-Xin Ren,et al. A class of fully second order accurate projection methods for solving the incompressible Navier-Stokes equations , 2004 .
[18] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[19] P. Houwen,et al. On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .
[20] R. Verzicco,et al. A Finite-Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates , 1996 .
[21] Jean-Luc Guermond,et al. International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .
[22] E Weinan,et al. GAUGE METHOD FOR VISCOUS INCOMPRESSIBLE FLOWS , 2003 .
[23] John B. Bell,et al. Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..
[24] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[25] J. Kan. A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .
[26] Phillip Colella,et al. An efficient second-order projection method for viscous incompressible flow , 1991 .
[27] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[28] L. Shampine,et al. RKC: an explicit solver for parabolic PDEs , 1998 .
[29] John B. Bell,et al. A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..