Faint objects in motion: the new frontier of high precision astrometry

[1]  J. L. Rasilla,et al.  A precise architecture characterization of theπMensae planetary system , 2020, Astronomy & Astrophysics.

[2]  M. Wyatt,et al.  Evidence for a high mutual inclination between the cold Jupiter and transiting super Earth orbiting π Men , 2020, 2007.01871.

[3]  P. Kervella,et al.  Orbital inclination and mass of the exoplanet candidate Proxima c , 2020, Astronomy & Astrophysics.

[4]  F. Kiefer Determining the mass of the planetary candidate HD 114762 b using Gaia , 2019, Astronomy & Astrophysics.

[5]  E. Ford,et al.  Sensitivity Analyses of Exoplanet Occurrence Rates from Kepler and Gaia , 2019, The Astronomical Journal.

[6]  Kyler Kuehn,et al.  Discovery of a nearby 1700 km s−1 star ejected from the Milky Way by Sgr A* , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  A. Irrgang,et al.  PG 1610+062: a runaway B star challenging classical ejection mechanisms , 2019, Astronomy & Astrophysics.

[8]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  J. Lissauer,et al.  Planet Formation , 2019, Fundamental Planetary Science.

[10]  Adrian M. Price-Whelan,et al.  Multiple Components of the Jhelum Stellar Stream , 2019, The Astrophysical Journal.

[11]  P. Kroupa,et al.  Directly testing gravity with Proxima Centauri , 2019, Monthly notices of the Royal Astronomical Society.

[12]  R. Lynch,et al.  Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar , 2019, Nature Astronomy.

[13]  Katherine Freese,et al.  Butterfly in a Cocoon, Understanding the Origin and Morphology of Globular Cluster Streams: The Case of GD-1 , 2019, The Astrophysical Journal.

[14]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[15]  R. Carlberg,et al.  The Density Structure of Simulated Stellar Streams , 2018, The Astrophysical Journal.

[16]  A. Irrgang,et al.  Hypervelocity stars in the Gaia era , 2018, Astronomy & Astrophysics.

[17]  Harry Jones,et al.  The Recent Large Reduction in Space Launch Cost , 2018 .

[18]  V. Belokurov,et al.  Inferred Evidence for Dark Matter Kinematic Substructure with SDSS–Gaia , 2018, The Astrophysical Journal.

[19]  V. Belokurov,et al.  Dark Matter in Disequilibrium: The Local Velocity Distribution from SDSS-Gaia , 2018, 1807.02519.

[20]  Warren R. Brown,et al.  Gaia and the Galactic Center Origin of Hypervelocity Stars , 2018, The Astrophysical Journal.

[21]  Adrian M. Price-Whelan,et al.  Off the Beaten Path: Gaia Reveals GD-1 Stars outside of the Main Stream , 2018, The Astrophysical Journal.

[22]  W. E. Kerzendorf,et al.  Three Hypervelocity White Dwarfs in Gaia DR2: Evidence for Dynamically Driven Double-degenerate Double-detonation Type Ia Supernovae , 2018, The Astrophysical Journal.

[23]  M. Valluri,et al.  Constraining Solar Position and Velocity with a nearby Hypervelocity Star , 2018, The Astrophysical Journal.

[24]  Sergey E. Koposov,et al.  Modelling the Tucana III stream - a close passage with the LMC , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[26]  M. Lisanti,et al.  The metal-poor stellar halo in RAVE-TGAS and its implications for the velocity distribution of dark matter , 2017, 1708.03635.

[27]  Bertrand Mennesson,et al.  Theia: Faint objects in motion or the new astrometry frontier , 2017, 1707.01348.

[28]  P. Madau,et al.  Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars. , 2017, Physical review letters.

[29]  Lennart Lindegren,et al.  Astrometry and exoplanets in theGaiaera: a Bayesian approach to detection and parameter recovery , 2017, Astronomy & Astrophysics.

[30]  Matthias Y. He,et al.  First limits on the occurrence rate of short-period planets orbiting brown dwarfs , 2016, 1609.05053.

[31]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[32]  Tanvi Karwal,et al.  Dark energy at early times, the Hubble parameter, and the string axiverse , 2016 .

[33]  Tanvi Karwal,et al.  Dark energy at early times, the Hubble parameter, and the string axiverse , 2016, 1608.01309.

[34]  G. Kennedy,et al.  Effects of disc asymmetries on astrometric measurements , 2016 .

[35]  Alessandro Sozzetti,et al.  Microarcsecond astrometric observatory Theia: from dark matter to compact objects and nearby earths , 2016, Astronomical Telescopes + Instrumentation.

[36]  S. Lafrasse,et al.  The latest results from DICE (Detector Interferometric Calibration Experiment) , 2016, Astronomical Telescopes + Instrumentation.

[37]  A. King,et al.  Black holes in stellar-mass binary systems: expiating original spin? , 2016, 1607.02144.

[38]  F. Courbin,et al.  H0LiCOW - IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology , 2016, 1607.01403.

[39]  P. Marshall,et al.  H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts★ , 2016, 1607.01047.

[40]  G. Meylan,et al.  H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223 , 2016, 1607.00382.

[41]  G. Meylan,et al.  H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.

[42]  G. Kennedy,et al.  Effects of disc asymmetries on astrometric measurements - Can they mimic planets? , 2016, 1605.04908.

[43]  D. Walton,et al.  THE SOFT STATE OF CYGNUS X-1 OBSERVED WITH NuSTAR: A VARIABLE CORONA AND A STABLE INNER DISK , 2016, 1605.03966.

[44]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[45]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[46]  M. Bejger,et al.  Neutron star radii and crusts: Uncertainties and unified equations of state , 2016, 1604.01944.

[47]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[48]  M. Miller,et al.  Observational Constraints on Neutron Star Masses and Radii , 2016, 1604.03894.

[49]  P. Freire,et al.  Masses, Radii, and the Equation of State of Neutron Stars , 2016, 1603.02698.

[50]  Z. Musielak,et al.  Stability of a planet in the HD 41004 binary system , 2016 .

[51]  A. Misra,et al.  IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O4 RESULTING FROM ABIOTIC O2/O3 PRODUCTION , 2016, The astrophysical journal. Letters.

[52]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[53]  M. Bejger,et al.  Rotating neutron stars with exotic cores: masses, radii, stability , 2016, 1601.05368.

[54]  J. Lattimer,et al.  The Equation of State of Hot, Dense Matter and Neutron Stars , 2015, 1512.07820.

[55]  G. Lewis,et al.  Ultracompact Minihalos as Probes of Inflationary Cosmology. , 2015, Physical review letters.

[56]  A. Léger Respective capabilities of affordable Coronagraphs and Interferometers searching for Biosignatures , 2015 .

[57]  S. Ho,et al.  Testing deviations from ΛCDM with growth rate measurements from six large-scale structure surveys at $z = $0.06–1 , 2015, 1509.05034.

[58]  O. Agertz,et al.  Dark matter cores all the way down , 2015, 1508.04143.

[59]  D. Maoz,et al.  A VENUS-MASS PLANET ORBITING A BROWN DWARF: A MISSING LINK BETWEEN PLANETS AND MOONS , 2015, 1507.02388.

[60]  Immacolata Donnarumma,et al.  The Transient Universe with the Square Kilometre Array , 2015 .

[61]  H. J. van-Langevelde,et al.  SKA and the Cradle of Life , 2015 .

[62]  G. Hallinan,et al.  Magnetospheric Radio Emissions from Exoplanets with the SKA , 2015 .

[63]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[64]  Warren R. Brown,et al.  PROPER MOTIONS AND TRAJECTORIES FOR 16 EXTREME RUNAWAY AND HYPERVELOCITY STARS , 2015, 1502.05069.

[65]  P. Hopkins,et al.  Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies , 2015, 1502.02036.

[66]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[67]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[68]  J.H.J. de Bruijne,et al.  Gaia astrometric science performance - post-launch predictions , 2014, 1502.00791.

[69]  N. Haghighipour,et al.  Planet formation in Binaries , 2014, 1406.1357.

[70]  Harvard,et al.  Improved mass and radius constraints for quiescent neutron stars in ω Cen and NGC 6397 , 2014, 1406.1497.

[71]  A. Sozzetti Gaia, Non-Single Stars, Brown Dwarfs, and Exoplanets , 2014, 1406.1388.

[72]  L. Testi,et al.  BROWN DWARF DISKS WITH ALMA , 2014, 1406.0635.

[73]  P. McCullough,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[74]  C. Baugh,et al.  Using the Milky Way satellites to study interactions between cold dark matter and radiation , 2014, 1404.7012.

[75]  F. Faedi,et al.  On the abundance of circumbinary planets , 2014, 1404.5617.

[76]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[77]  Joern Wilms,et al.  THE REFLECTION COMPONENT FROM CYGNUS X-1 IN THE SOFT STATE MEASURED BY NuSTAR AND SUZAKU , 2013, 1310.3830.

[78]  R. Feldmann,et al.  Detecting Dark Matter Substructures around the Milky Way With Gaia , 2013, 1310.2243.

[79]  M. D. Brok,et al.  Discrete dynamical models of ω Centauri , 2013, 1308.4789.

[80]  F. Meru,et al.  GROWTH OF GRAINS IN BROWN DWARF DISKS , 2013, 1307.3708.

[81]  G. Meylan,et al.  COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA , 2013, 1306.4732.

[82]  Andrew W. Howard,et al.  Observed Properties of Extrasolar Planets , 2013, Science.

[83]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[84]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[85]  J. Bailin,et al.  HALO ORBITS IN COSMOLOGICAL DISK GALAXIES: TRACERS OF FORMATION HISTORY , 2013, 1301.4517.

[86]  L. Testi,et al.  ALMA OBSERVATIONS OF ρ-Oph 102: GRAIN GROWTH AND MOLECULAR GAS IN THE DISK AROUND A YOUNG BROWN DWARF , 2012, 1211.6743.

[87]  J. Dunlop,et al.  Simulating the assembly of galaxies at redshifts z = 6–12 , 2012, 1211.1034.

[88]  E. Kokubo,et al.  A dynamical study on the habitability of terrestrial exoplanets – I. Tidally evolved planet–satellite pairs , 2012, 1210.1640.

[89]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.

[90]  M. Erdmann,et al.  Gaia basic angle monitoring system , 2012, Optics & Photonics - Optical Engineering + Applications.

[91]  Lennart Lindegren,et al.  Error characterization of the Gaia astrometric solution - II. Validating the covariance expansion model , 2012 .

[92]  B. Holl,et al.  Error characterization of the Gaia astrometric solution I. Mathematical basis of the covariance expansion model , 2012 .

[93]  B. Yanny,et al.  GALACTOSEISMOLOGY: DISCOVERY OF VERTICAL WAVES IN THE GALACTIC DISK , 2012, 1203.6861.

[94]  J. Chluba,et al.  PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM , 2012, 1203.2681.

[95]  N. Law,et al.  A new probe of the small-scale primordial power spectrum: astrometric microlensing by ultracompact minihalos , 2012, 1202.1284.

[96]  A. Burrows,et al.  ANALYTIC MODELS FOR ALBEDOS, PHASE CURVES, AND POLARIZATION OF REFLECTED LIGHT FROM EXOPLANETS , 2011, 1112.4476.

[97]  V. Golev,et al.  Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy , 2011 .

[98]  T. Bringmann,et al.  Improved constraints on the primordial power spectrum at small scales from ultracompact minihalos , 2011, 1110.2484.

[99]  S. Kay,et al.  Influence of baryons on the orbital structure of dark matter haloes , 2011, 1109.4612.

[100]  V. Debattista,et al.  Probing the shape and history of the Milky Way halo with orbital spectral analysis , 2011, 1109.3193.

[101]  A. Kravtsov,et al.  THE IMPACT OF BARYON PHYSICS ON THE STRUCTURE OF HIGH-REDSHIFT GALAXIES , 2011, 1108.5384.

[102]  J. Peñarrubia,et al.  A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES , 2011, 1108.2404.

[103]  Michael Shao,et al.  High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT) , 2011, 1107.3643.

[104]  M. Reid,et al.  THE MASS OF THE BLACK HOLE IN CYGNUS X-1 , 2011, 1106.3689.

[105]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRU:VI , 2011 .

[106]  Philippe Thebault,et al.  Against all odds? Forming the planet of the HD 196885 binary , 2011, 1103.3900.

[107]  F. Malbet,et al.  Using the Sun to estimate Earth-like planets detection capabilities . III. Impact of spots and plage , 2011, 1101.2512.

[108]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[109]  S. Ransom,et al.  Shapiro delay measurement of a two solar mass neutron star , 2010, 1010.5788.

[110]  L. Verde,et al.  Minimally parametric power spectrum reconstruction from the Lyman α forest , 2010, 1010.1519.

[111]  The Cta Consortium Design Concepts for the Cherenkov Telescope Array , 2010, 1008.3703.

[112]  M. Muterspaugh,et al.  MASSES OF NEUTRON STARS IN HIGH-MASS X-RAY BINARIES WITH OPTICAL ASTROMETRY , 2010, 1006.4665.

[113]  A.-M. Lagrange,et al.  Using the Sun to estimate Earth-like planets detection capabilities II. Impact of plages , 2010, 1001.1638.

[114]  Gregory D. Martinez,et al.  Accurate masses for dispersion-supported galaxies , 2009, 0908.2995.

[115]  V. Debattista,et al.  The orbital evolution induced by baryonic condensation in triaxial haloes , 2009, 0906.4784.

[116]  J. Peñarrubia,et al.  A UNIVERSAL MASS PROFILE FOR DWARF SPHEROIDAL GALAXIES? , 2009, 0906.0341.

[117]  D. Psaltis,et al.  Reconstructing the neutron-star equation of state from astrophysical measurements , 2009, 0905.1959.

[118]  M. Holman,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2009 .

[119]  B. Holl,et al.  Spatial correlations in the Gaia astrometric solution , 2009, Proceedings of the International Astronomical Union.

[120]  Karim A. Malik,et al.  Generalised constraints on the curvature perturbation from primordial black holes , 2009, 0903.3184.

[121]  Renaud Goullioud,et al.  Overview of the SIM PlanetQuest Light mission concept , 2008, Astronomical Telescopes + Instrumentation.

[122]  Rene Doyon,et al.  IRAS 04325+2402C: A Very Low Mass Object with an Edge-On Disk , 2008, 0806.2318.

[123]  T. Kitching,et al.  Bayesian Galaxy Shape Measurement for Weak Lensing Surveys -II. Application to Simulations , 2008, 0802.1528.

[124]  University of Leicester,et al.  The potential for Earth‐mass planet formation around brown dwarfs , 2007, 0709.0676.

[125]  P. Madau,et al.  Kinematics of hypervelocity stars in the triaxial halo of the Milky Way , 2007, 0705.3514.

[126]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[127]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[128]  F. Bresolin,et al.  US 708 – an unbound hyper-velocity subluminous O star , 2005, astro-ph/0511323.

[129]  N. Christlieb,et al.  HE 0437–5439: An Unbound Hypervelocity Main-Sequence B-Type Star , 2005, astro-ph/0511321.

[130]  A. Gould,et al.  Probing the Shape of the Galactic Halo with Hypervelocity Stars , 2005, astro-ph/0506739.

[131]  Michael J. Kurtz,et al.  Submitted to ApJ Letters , 1996 .

[132]  J. Lattimer,et al.  Ultimate energy density of observable cold baryonic matter. , 2004, Physical review letters.

[133]  D. Merritt,et al.  Chaotic Loss Cones and Black Hole Fueling , 2004 .

[134]  B. Moore,et al.  The Effect of Gas Cooling on the Shapes of Dark Matter Halos , 2004, astro-ph/0405189.

[135]  N. Haghighipour On the Dynamical Stability of γ Cephei, an S‐Type Binary Planetary System , 2004, astro-ph/0403312.

[136]  I. Bombaci Strangeness in neutron stars , 2003, astro-ph/0312452.

[137]  S. Tremaine,et al.  Ejection of Hypervelocity Stars by the (Binary) Black Hole in the Galactic Center , 2003, astro-ph/0309084.

[138]  D. Merritt,et al.  Chaotic Loss Cones, Black Hole Fueling and the M-Sigma Relation , 2003, astro-ph/0302296.

[139]  T. Maccarone On the misalignment of jets in microquasars , 2002, astro-ph/0209105.

[140]  F. Guglielmetti,et al.  A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood , 2001, Nature.

[141]  G. L. Wycoff,et al.  (Erratum) Letter to the Editor - The Tycho-2 catalogue of the 2.5 million brightest stars , 2000 .

[142]  F. Weber Strangeness in neutron stars , 2000, astro-ph/0008376.

[143]  D. Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[144]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[145]  J. Dubinski THE EFFECT OF DISSIPATION ON THE SHAPES OF DARK HALOS , 1993, astro-ph/9309001.

[146]  J. Laskar,et al.  The chaotic obliquity of the planets , 1993, Nature.

[147]  J. Hills,et al.  Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole , 1988, Nature.

[148]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[149]  J. Silk,et al.  Massive neutrinos and the pancake theory of galaxy formation , 1984 .

[150]  Gary A. Mamon,et al.  M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole? , 1982 .

[151]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[152]  H. Rauer,et al.  Space Missions for Exoplanet Science: PLATO , 2018 .

[153]  J. Bruijne,et al.  Space Astrometry Missions for Exoplanet Science: Gaia and the Legacy of Hipparcos , 2018 .

[154]  Juan Antonio Belmonte,et al.  Handbook of Exoplanets , 2018 .

[155]  A. Irrgang,et al.  Hypervelocity stars in the Gaia era-Runaway B stars beyond the velocity limit of classical ejection mechanisms , 2018 .

[156]  B. Holl,et al.  Error characterization of the Gaia astrometric solution , 2012 .

[157]  Dobák Judit,et al.  PhD dissertation , 2011 .

[158]  C. A. Oxborrow,et al.  Planck early results Special feature Planck early results . I . The Planck mission Planck Collaboration : , 2011 .

[159]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . XXIII . The first all-sky survey of Galactic cold clumps , 2011 .

[160]  M. Soffel,et al.  Spatial correlations in the Gaia astrometric solution , 2010 .

[161]  Lance Michael Simms,et al.  Hybrid CMOS SiPIN detectors as astronomical imagers , 2010 .

[162]  Ulrich Bastian,et al.  The Hipparcos catalogue , 2009 .

[163]  M. Hanke Hypervelocity Stars , 2006 .

[164]  A. Gould,et al.  A NEW PROBE OF DARK MATTER AND HIGH-ENERGY UNIVERSE USING MICROLENSING , 2009, 0908.0735.