On lower semicontinuity in BH and 2-quasiconvexification

[1]  D. Owen,et al.  Second-Order Structured Deformations , 2000 .

[2]  Laura Poggiolini,et al.  Lower semicontinuity for quasiconvex integrals of higher order , 1999 .

[3]  Jan Kristensen,et al.  Lower semicontinuity in spaces of weakly differentiable functions , 1999 .

[4]  Irene Fonseca,et al.  A Global Method for Relaxation , 1998 .

[5]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[6]  C. J. Larsen Quasiconvexification in W 1,1 and optimal jump microstructure in BV relaxation , 1998 .

[7]  I. Fonseca,et al.  Bulk and Interfacial Energy Densities for Structured Deformations of Continua , 1997 .

[8]  L. Ambrosio On the lower semicontinuity of quasiconvex integrals in SBV W , R k , 1994 .

[9]  G. Piero,et al.  Structured deformations of continua , 1993 .

[10]  Irene Fonseca,et al.  Relaxation of quasiconvex functional in BV(Ω, ℝp) for integrands f(x, u,∇;u) , 1993 .

[11]  Irene Fonseca,et al.  Quasi-convex integrands and lower semicontinuity in L 1 , 1992 .

[12]  G. Alberti A Lusin Type Theorem for Gradients , 1991 .

[13]  Françoise Demengel,et al.  Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity , 1989 .

[14]  W. Ziemer Weakly differentiable functions , 1989 .

[15]  Paolo Marcellini,et al.  Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals , 1985 .

[16]  Erik J. Balder,et al.  A General Approach to Lower Semicontinuity and Lower Closure in Optimal Control Theory , 1984 .

[17]  Nicola Fusco,et al.  Semicontinuity problems in the calculus of variations , 1984 .

[18]  Bernard Dacorogna,et al.  Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .

[19]  J. C. Currie,et al.  Weak continuity and variational problems of arbitrary order , 1981 .

[20]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[21]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[22]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[23]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[24]  N. Meyers QUASI-CONVEX1TY AND LOWER SEMI-CONTINUITY OF MULTIPLE VARIATIONAL INTEGRALS OF ANY ORDER , 2010 .

[25]  Antonio Leaci,et al.  A second order model in image segmentation: Blake & Zisserman functional , 1996 .

[26]  F. Flores-Bazán Some remarks about relaxation problems in the Calculus of Variations , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  Micol Amar,et al.  Relaxation of quasi-convex integrals of arbitrary order , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  M. Carriero,et al.  Special Bounded Hessian and elastic-plastic plate , 1992 .

[29]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[30]  E. Giorgi,et al.  Un nuovo tipo di funzionale del calcolo delle variazioni , 1988 .

[31]  Françoise Demengel,et al.  Fonctions à hessien borné , 1984 .

[32]  R. Temam,et al.  Problèmes mathématiques en plasticité , 1983 .

[33]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[34]  I. Fonseca,et al.  Esaim: Control, Optimisation and Calculus of Variations A-quasiconvexity: Relaxation and Homogenization , 2022 .

[35]  I. Fonseca,et al.  F Ur Mathematik in Den Naturwissenschaften Leipzig A-quasiconvexity, Lower Semicontinuity and Young Measures , 2022 .