On lower semicontinuity in BH and 2-quasiconvexification
暂无分享,去创建一个
[1] D. Owen,et al. Second-Order Structured Deformations , 2000 .
[2] Laura Poggiolini,et al. Lower semicontinuity for quasiconvex integrals of higher order , 1999 .
[3] Jan Kristensen,et al. Lower semicontinuity in spaces of weakly differentiable functions , 1999 .
[4] Irene Fonseca,et al. A Global Method for Relaxation , 1998 .
[5] Andrea Braides. Approximation of Free-Discontinuity Problems , 1998 .
[6] C. J. Larsen. Quasiconvexification in W 1,1 and optimal jump microstructure in BV relaxation , 1998 .
[7] I. Fonseca,et al. Bulk and Interfacial Energy Densities for Structured Deformations of Continua , 1997 .
[8] L. Ambrosio. On the lower semicontinuity of quasiconvex integrals in SBV W , R k , 1994 .
[9] G. Piero,et al. Structured deformations of continua , 1993 .
[10] Irene Fonseca,et al. Relaxation of quasiconvex functional in BV(Ω, ℝp) for integrands f(x, u,∇;u) , 1993 .
[11] Irene Fonseca,et al. Quasi-convex integrands and lower semicontinuity in L 1 , 1992 .
[12] G. Alberti. A Lusin Type Theorem for Gradients , 1991 .
[13] Françoise Demengel,et al. Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity , 1989 .
[14] W. Ziemer. Weakly differentiable functions , 1989 .
[15] Paolo Marcellini,et al. Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals , 1985 .
[16] Erik J. Balder,et al. A General Approach to Lower Semicontinuity and Lower Closure in Optimal Control Theory , 1984 .
[17] Nicola Fusco,et al. Semicontinuity problems in the calculus of variations , 1984 .
[18] Bernard Dacorogna,et al. Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .
[19] J. C. Currie,et al. Weak continuity and variational problems of arbitrary order , 1981 .
[20] J. Ball. Convexity conditions and existence theorems in nonlinear elasticity , 1976 .
[21] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[22] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[23] Charles B. Morrey,et al. QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .
[24] N. Meyers. QUASI-CONVEX1TY AND LOWER SEMI-CONTINUITY OF MULTIPLE VARIATIONAL INTEGRALS OF ANY ORDER , 2010 .
[25] Antonio Leaci,et al. A second order model in image segmentation: Blake & Zisserman functional , 1996 .
[26] F. Flores-Bazán. Some remarks about relaxation problems in the Calculus of Variations , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[27] Micol Amar,et al. Relaxation of quasi-convex integrals of arbitrary order , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[28] M. Carriero,et al. Special Bounded Hessian and elastic-plastic plate , 1992 .
[29] B. Dacorogna. Direct methods in the calculus of variations , 1989 .
[30] E. Giorgi,et al. Un nuovo tipo di funzionale del calcolo delle variazioni , 1988 .
[31] Françoise Demengel,et al. Fonctions à hessien borné , 1984 .
[32] R. Temam,et al. Problèmes mathématiques en plasticité , 1983 .
[33] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[34] I. Fonseca,et al. Esaim: Control, Optimisation and Calculus of Variations A-quasiconvexity: Relaxation and Homogenization , 2022 .
[35] I. Fonseca,et al. F Ur Mathematik in Den Naturwissenschaften Leipzig A-quasiconvexity, Lower Semicontinuity and Young Measures , 2022 .