A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities
暂无分享,去创建一个
Pedro R. S. Antunes | PEDRO R. S. ANTUNES | RAFAEL D. BENGURIA | VLADIMIR LOTOREICHIK | THOMAS OURMIÈRES-BONAFOS | R. Benguria | V. Lotoreichik | T. Ourmières-Bonafos
[1] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[2] H. Cornean,et al. Resolvent Convergence to Dirac Operators on Planar Domains , 2018, Annales Henri Poincaré.
[3] Pedro R S Antunes. Extremal p -Laplacian eigenvalues , 2019, Nonlinearity.
[4] Marie-Hélène Bossel. Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .
[5] Gennadi Vainikko,et al. Periodic Integral and Pseudodifferential Equations with Numerical Approximation , 2001 .
[6] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[7] The Hijazi inequality on manifolds with boundary , 2006, math/0603510.
[8] Bengt Fornberg,et al. Solving PDEs with radial basis functions * , 2015, Acta Numerica.
[9] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[10] L. Treust,et al. Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors , 2017, 1707.04000.
[11] L. Treust,et al. The MIT Bag Model as an infinite mass limit , 2018, Journal de l’École polytechnique — Mathématiques.
[12] S. Fournais,et al. Self-Adjointness of Two-Dimensional Dirac Operators on Domains , 2017, 1704.06106.
[13] Christian Bär. Lower eigenvalue estimates for Dirac operators , 1992 .
[14] K. Schmidt. A REMARK ON BOUNDARY VALUE PROBLEMS FOR THE DIRAC OPERATOR , 1995 .
[15] Upper bounds for the first eigenvalue of the Dirac operator on surfaces , 1998, math/9806081.
[16] Jean Dolbeault,et al. On the eigenvalues of operators with gaps. Application to Dirac operators. , 2000, 2206.06327.
[17] Tosio Kato. Perturbation theory for linear operators , 1966 .
[18] Tsuyoshi Murata,et al. {m , 1934, ACML.
[19] J. P. Solovej,et al. Friedrichs Extension and Min–Max Principle for Operators with a Gap , 2018, Annales Henri Poincaré.
[20] Jean Dolbeault,et al. A variational method for relativistic computations in atomic and molecular physics , 2003 .
[21] M. Holzmann,et al. Dirac operators with Lorentz scalar shell interactions , 2017, Reviews in Mathematical Physics.
[22] E. Krahn,et al. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .
[23] L. Treust,et al. On the MIT Bag Model in the Non-relativistic Limit , 2016, Communications in Mathematical Physics.
[24] G. Szegő,et al. Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .
[25] Steven R. Bell,et al. The Cauchy Transform, Potential Theory and Conformal Mapping , 2015 .
[26] R. Hiptmair,et al. Boundary Element Methods , 2021, Oberwolfach Reports.
[27] J. Behrndt,et al. Two-dimensional Dirac operators with singular interactions supported on closed curves , 2019, Journal of Functional Analysis.
[28] L. Vega,et al. A strategy for self-adjointness of Dirac operators: Applications to the MIT bag model and $\delta$-shell interactions , 2016, Publicacions Matemàtiques.
[29] A Sharp Upper Bound on the Spectral Gap for Graphene Quantum Dots , 2018, Mathematical Physics, Analysis and Geometry.
[30] Christian Bär,et al. Extrinsic Bounds for Eigenvalues of the Dirac Operator , 1998, math/9805064.
[31] Konstantin Pankrashkin,et al. Dirac Operators on Hypersurfaces as Large Mass Limits , 2018, 1811.03340.
[32] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[33] E. Stockmeyer,et al. Infinite mass boundary conditions for Dirac operators , 2016, Journal of Spectral Theory.
[34] Daniel Daners,et al. A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .
[35] L. Vega,et al. Shell interactions for Dirac operators , 2013, 1303.2519.
[36] M. Griesemer,et al. A Minimax Principle for the Eigenvalues in Spectral Gaps , 1999 .
[37] Michael I. Weinstein,et al. Honeycomb Lattice Potentials and Dirac Points , 2012, 1202.3839.
[38] S. Fournais,et al. Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots , 2016, 1601.06607.