A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities

We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $\mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szego type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.

[1]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[2]  H. Cornean,et al.  Resolvent Convergence to Dirac Operators on Planar Domains , 2018, Annales Henri Poincaré.

[3]  Pedro R S Antunes Extremal p -Laplacian eigenvalues , 2019, Nonlinearity.

[4]  Marie-Hélène Bossel Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .

[5]  Gennadi Vainikko,et al.  Periodic Integral and Pseudodifferential Equations with Numerical Approximation , 2001 .

[6]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[7]  The Hijazi inequality on manifolds with boundary , 2006, math/0603510.

[8]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[9]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[10]  L. Treust,et al.  Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors , 2017, 1707.04000.

[11]  L. Treust,et al.  The MIT Bag Model as an infinite mass limit , 2018, Journal de l’École polytechnique — Mathématiques.

[12]  S. Fournais,et al.  Self-Adjointness of Two-Dimensional Dirac Operators on Domains , 2017, 1704.06106.

[13]  Christian Bär Lower eigenvalue estimates for Dirac operators , 1992 .

[14]  K. Schmidt A REMARK ON BOUNDARY VALUE PROBLEMS FOR THE DIRAC OPERATOR , 1995 .

[15]  Upper bounds for the first eigenvalue of the Dirac operator on surfaces , 1998, math/9806081.

[16]  Jean Dolbeault,et al.  On the eigenvalues of operators with gaps. Application to Dirac operators. , 2000, 2206.06327.

[17]  Tosio Kato Perturbation theory for linear operators , 1966 .

[18]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[19]  J. P. Solovej,et al.  Friedrichs Extension and Min–Max Principle for Operators with a Gap , 2018, Annales Henri Poincaré.

[20]  Jean Dolbeault,et al.  A variational method for relativistic computations in atomic and molecular physics , 2003 .

[21]  M. Holzmann,et al.  Dirac operators with Lorentz scalar shell interactions , 2017, Reviews in Mathematical Physics.

[22]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[23]  L. Treust,et al.  On the MIT Bag Model in the Non-relativistic Limit , 2016, Communications in Mathematical Physics.

[24]  G. Szegő,et al.  Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .

[25]  Steven R. Bell,et al.  The Cauchy Transform, Potential Theory and Conformal Mapping , 2015 .

[26]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[27]  J. Behrndt,et al.  Two-dimensional Dirac operators with singular interactions supported on closed curves , 2019, Journal of Functional Analysis.

[28]  L. Vega,et al.  A strategy for self-adjointness of Dirac operators: Applications to the MIT bag model and $\delta$-shell interactions , 2016, Publicacions Matemàtiques.

[29]  A Sharp Upper Bound on the Spectral Gap for Graphene Quantum Dots , 2018, Mathematical Physics, Analysis and Geometry.

[30]  Christian Bär,et al.  Extrinsic Bounds for Eigenvalues of the Dirac Operator , 1998, math/9805064.

[31]  Konstantin Pankrashkin,et al.  Dirac Operators on Hypersurfaces as Large Mass Limits , 2018, 1811.03340.

[32]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[33]  E. Stockmeyer,et al.  Infinite mass boundary conditions for Dirac operators , 2016, Journal of Spectral Theory.

[34]  Daniel Daners,et al.  A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .

[35]  L. Vega,et al.  Shell interactions for Dirac operators , 2013, 1303.2519.

[36]  M. Griesemer,et al.  A Minimax Principle for the Eigenvalues in Spectral Gaps , 1999 .

[37]  Michael I. Weinstein,et al.  Honeycomb Lattice Potentials and Dirac Points , 2012, 1202.3839.

[38]  S. Fournais,et al.  Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots , 2016, 1601.06607.