A note on the ( regularizing ) preconditioning of g-Toeplitz sequences via g-circulants

For a given nonnegative integer g , a matrix A n of size n is called g -Toeplitz if its entries obey the rule A n = a r - g s ] r , s = 0 n - 1 . Analogously, a matrix A n again of size n is called g -circulant if A n = a ( r - g s ) mod n ] r , s = 0 n - 1 . In a recent work we studied the asymptotic properties, in terms of spectral distribution, of both g -circulant and g -Toeplitz sequences in the case where { a k } can be interpreted as the sequence of Fourier coefficients of an integrable function f over the domain ( - π , π ) . Here we are interested in the preconditioning problem which is well understood and widely studied in the last three decades in the classical Toeplitz case, i.e., for g = 1 . In particular, we consider the generalized case with g ? 2 and the nontrivial result is that the preconditioned sequence { P n } = { P n - 1 A n } , where { P n } is the sequence of preconditioner, cannot be clustered at 1 so that the case of g = 1 is exceptional. However, while a standard preconditioning cannot be achieved, the result has a potential positive implication since there exist choices of g -circulant sequences which can be used as basic preconditioning sequences for the corresponding g -Toeplitz structures. Generalizations to the block and multilevel case are also considered, where g is a vector with nonnegative integer entries. A few numerical experiments, related to a specific application in signal restoration, are presented and critically discussed.

[1]  Stefano Serra,et al.  A Korovkin-type theory for finite Toeplitz operators via matrix algebras , 1999 .

[2]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[3]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[4]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[5]  Stefano Serra Capizzano,et al.  Asymptotic Zero Distribution of Orthogonal Polynomials with Discontinuously Varying Recurrence Coefficients , 2001, J. Approx. Theory.

[6]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[7]  Bernd Silbermann,et al.  Asymptotic Behavior of Generalized Convolutions: An Algebraic Approach , 2006 .

[8]  Gabriele Steidl,et al.  Preconditioners for Ill-Conditioned Toeplitz Matrices , 1999 .

[9]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[10]  Leonid Golinskii,et al.  The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.

[11]  Stefano Serra Capizzano,et al.  Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..

[12]  Claudio Estatico,et al.  Preconditioners for ill‐posed Toeplitz matrices with differentiable generating functions , 2009, Numer. Linear Algebra Appl..

[13]  Edward B. Saff,et al.  On Clenshaws's method and a generalisation to faber series , 1987 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  Marco Donatelli,et al.  Multigrid methods for Toeplitz linear systems with different size reduction , 2010, 1010.5730.

[16]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[17]  Paolo Tilli,et al.  Locally Toeplitz sequences: spectral properties and applications , 1998 .

[18]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[19]  Stefano Serra Capizzano,et al.  A Korovkin-Based Approximation of Multilevel Toeplitz Matrices (With Rectangular Unstructured Blocks) via Multilevel Trigonometric Matrix Spaces , 1999 .

[20]  J. Mandel Multi-Grid Methods and Applications (Wolfgang Hackbusch) , 1988 .

[21]  Stefano Serra-Capizzano,et al.  The spectral approximation of multiplication operators via asymptotic (structured) linear algebra , 2007 .

[22]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[23]  William F. Trench,et al.  Properties of multilevel block α̲-circulants , 2009 .

[24]  R. Penrose A Generalized inverse for matrices , 1955 .

[25]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[26]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[27]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[28]  Claudio Estatico,et al.  A classification scheme for regularizing preconditioners, with application to Toeplitz systems☆ , 2005 .

[29]  Stefano Serra Capizzano,et al.  Spectral Features and Asymptotic Properties for g-Circulants and g-Toeplitz Sequences , 2010, SIAM J. Matrix Anal. Appl..

[30]  Pedro M. Crespo,et al.  Mass concentration in quasicommutators of Toeplitz matrices , 2007 .

[31]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  S. Serra Capizzano,et al.  Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .

[34]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[35]  Paolo Tilli,et al.  Some Results on Complex Toeplitz Eigenvalues , 1999 .

[36]  A. Buras,et al.  A general analysis of , 1998, hep-ph/9810260.

[37]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[38]  Albrecht Böttcher,et al.  The Szegő and Avram–Parter theorems for general test functions , 2008 .

[39]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[40]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[41]  S. Serra-Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003, SIAM J. Sci. Comput..

[42]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[43]  Stefano Serra-Capizzano,et al.  Spectral features and asymptotic properties for alpha-circulants and alpha-Toeplitz sequences: theoretical results and examples , 2009, 0906.2104.

[44]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[45]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .