Quantum Discord and Information Deficit in Spin Chains

We examine the behavior of quantum correlations of spin pairs in a finite anisotropic XY spin chain immersed in a transverse magnetic field, through the analysis of the quantum discord and the conventional and quadratic one-way information deficits. We first provide a brief review of these measures, showing that the last ones can be obtained as particular cases of a generalized information deficit based on general entropic forms. All of these measures coincide with an entanglement entropy in the case of pure states, but can be non-zero in separable mixed states, vanishing just for classically correlated states. It is then shown that their behavior in the exact ground state of the chain exhibits similar features, deviating significantly from that of the pair entanglement below the critical field. In contrast with entanglement, they reach full range in this region, becoming independent of the pair separation and coupling range in the immediate vicinity of the factorizing field. It is also shown, however, that significant differences between the quantum discord and the information deficits arise in the local minimizing measurement that defines them. Both analytical and numerical results are provided.

[1]  R. Bhatia Matrix Analysis , 1996 .

[2]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.

[3]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[4]  Gustavo Rigolin,et al.  Spotlighting quantum critical points via quantum correlations at finite temperatures , 2011 .

[5]  Wojciech Hubert Zurek Quantum discord and Maxwell's demons , 2003 .

[6]  Yichen Huang,et al.  Computing quantum discord is NP-complete , 2013, 1305.5941.

[7]  R. Rossignoli,et al.  Entanglement between distant qubits in cyclic X X chains , 2007, 0906.0801.

[8]  V. Vedral Classical correlations and entanglement in quantum measurements. , 2002, Physical review letters.

[9]  木村 元,et al.  量子情報科学入門 = Introduction to quantum information science , 2012 .

[10]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[11]  L.Amico,et al.  Divergence of the entanglement range in low dimensional quantum systems , 2006 .

[12]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[13]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[14]  Jonathan G. Richens,et al.  Criticality, factorization, and long-range correlations in the anisotropic XY model , 2013, 1309.1052.

[15]  Gerardo Adesso,et al.  Experimental entanglement activation from discord in a programmable quantum measurement. , 2013, Physical review letters.

[16]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[17]  Raoul Dillenschneider,et al.  Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.

[18]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[19]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[20]  G. Vidal On the characterization of entanglement , 1998 .

[21]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  Gustavo Rigolin,et al.  Thermal and magnetic quantum discord in Heisenberg models , 2009, 0911.3903.

[23]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[24]  Yichen Huang,et al.  Scaling of quantum discord in spin models , 2013, 1307.6034.

[25]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[27]  R. Rossignoli,et al.  Generalized entropic measures of quantum correlations , 2010, 1104.5678.

[28]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[29]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[30]  Marco Piani,et al.  Problem with geometric discord , 2012, 1206.0231.

[31]  R. Rossignoli,et al.  Generalized conditional entropy in bipartite quantum systems , 2013, 1308.3000.

[32]  A. Wehrl General properties of entropy , 1978 .

[33]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[34]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[35]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[36]  F. F. Fanchini,et al.  Conservation law for distributed entanglement of formation and quantum discord , 2010, 1006.2460.

[37]  F. Illuminati,et al.  Separability and ground-state factorization in quantum spin systems , 2009, 0904.1213.

[38]  R. Rossignoli,et al.  Violation of majorization relations in entangled states and its detection by means of generalized entropic forms , 2003, 1505.03611.

[39]  R. M. Serra,et al.  Quantum and classical thermal correlations in the XY spin-(1/2) chain , 2010, 1002.3906.

[40]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[41]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[42]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[43]  Guifre Vidal Entanglement monotones , 1998, quant-ph/9807077.

[44]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[45]  Gerardo Adesso,et al.  Probing quantum frustrated systems via factorization of the ground state. , 2009, Physical review letters.

[46]  Vlatko Vedral,et al.  Introduction to Quantum Information Science , 2006 .

[47]  R. Rossignoli,et al.  Generalized entropic criterion for separability , 2002, 1505.03608.

[48]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[49]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[50]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[51]  Liu Yanchao,et al.  Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction , 2011 .

[52]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[53]  R. Rossignoli,et al.  Quantum discord in finite XY chains , 2010, 1105.0027.

[54]  F. M. Paula,et al.  Geometric quantum discord through the Schatten 1-norm , 2013, 1302.7034.

[55]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[56]  Heng Fan,et al.  Quantum correlating power of local quantum channels , 2012, 1203.6149.

[57]  M. Nielsen,et al.  Interdisciplinary Physics: Biological Physics, Quantum Information, etc. , 2001 .

[58]  Gianfranco Cariolaro Introduction to Quantum Information , 2015 .

[59]  R. Rossignoli,et al.  Factorization and entanglement in general XYZ spin arrays in nonuniform transverse fields , 2009, 0910.0300.

[60]  V. Giovannetti,et al.  Toward computability of trace distance discord , 2013, 1304.6879.

[61]  C. H. Oh,et al.  Quantifying correlations via the Wigner-Yanase skew information , 2012 .

[62]  J. M. Matera,et al.  Measurements, quantum discord, and parity in spin-1 systems , 2012, 1206.2971.

[63]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[64]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[65]  Davide Girolami,et al.  Characterizing nonclassical correlations via local quantum uncertainty. , 2012, Physical review letters.

[66]  Radim Filip Overlap and entanglement-witness measurements , 2002 .

[67]  Quantum correlations and least disturbing local measurements , 2011, 1112.1587.

[68]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[69]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[70]  K. Yuasa,et al.  Measurement scheme for purity based on two two-body gates , 2012, 1201.2736.

[71]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[72]  Gerardo Adesso,et al.  Theory of ground state factorization in quantum cooperative systems. , 2008, Physical review letters.

[73]  M. Nielsen,et al.  Separable states are more disordered globally than locally. , 2000, Physical review letters.

[74]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[75]  S. Campbell,et al.  Global quantum correlations in finite-size spin chains , 2013, 1301.7114.

[76]  A. De Pasquale,et al.  XY model on the circle: Diagonalization, spectrum, and forerunners of the quantum phase transition , 2008, 0808.1478.

[77]  Gerhard Müller,et al.  Antiferromagnetic long-range order in the anisotropic quantum spin chain , 1982 .

[78]  Gerardo Adesso,et al.  Negativity of quantumness and its interpretations , 2012, 1211.4022.

[79]  Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii-Moriya interaction , 2010, 1012.2788.

[80]  R. Rossignoli,et al.  Generalized nonadditive entropies and quantum entanglement. , 2002, Physical review letters.

[81]  A. R. P. Rau,et al.  Calculation of quantum discord for qubit-qudit or N qubits , 2011, 1106.4488.

[82]  Possibility of a minimal purity-measurement scheme critically depends on the parity of dimension of the quantum system , 2012, 1209.0079.

[83]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[84]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[85]  R. Rossignoli,et al.  Separability and entanglement in finite dimer-type chains in general transverse fields , 2010, 1008.4412.

[86]  N. Canosa,et al.  Entanglement of finite cyclic chains at factorizing fields , 2008, 1101.3908.

[87]  A. R. P. Rau,et al.  Quantum discord for qubit–qudit systems , 2012 .

[88]  Animesh Datta,et al.  Interpreting quantum discord through quantum state merging , 2010, ArXiv.

[89]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.