Distributed scheduling of sensor networks for identification of spatio-temporal processes

Distributed scheduling of sensor networks for identification of spatio-temporal processes An approach to determine a scheduling policy for a sensor network monitoring some spatial domain in order to identify unknown parameters of a distributed system is discussed. Given a finite number of possible sites at which sensors are located, the activation schedule for scanning sensors is provided so as to maximize a criterion defined on the Fisher information matrix associated with the estimated parameters. The related combinatorial problem is relaxed through operating on the density of sensors in lieu of individual sensor positions. Then, based on the adaptation of pairwise communication algorithms and the idea of running consensus, a numerical scheme is developed which distributes the computational burden between the network nodes. As a result, a simple exchange algorithm is outlined to solve the design problem in a decentralized fashion.

[1]  G. Goodwin,et al.  Optimum experimental design for identification of distributed parameter systems , 1980 .

[2]  N. Sun Inverse problems in groundwater modeling , 1994 .

[3]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[4]  A. Vande Wouwer,et al.  Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design , 1996 .

[5]  Arye Nehorai,et al.  Localizing vapor-emitting sources by moving sensors , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[6]  Maciej Patan Optimal activation policies for continuous scanning observations in parameter estimation of distributed systems , 2006, Int. J. Syst. Sci..

[7]  Paolo Braca,et al.  Enforcing Consensus While Monitoring the Environment in Wireless Sensor Networks , 2008, IEEE Transactions on Signal Processing.

[8]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[9]  Maciej Patan,et al.  Distributed configuration of sensor networks for parameter estimation in spatio-temporal systems , 2009 .

[10]  Maciej Patan,et al.  D-optimal design of a monitoring network for parameter estimation of distributed systems , 2007, J. Glob. Optim..

[11]  Maciej Patan,et al.  OPTIMAL LOCATION OF DISCRETE SCANNING SENSORS FOR PARAMETER ESTIMATION OF DISTRIBUTED SYSTEMS , 2002 .

[12]  Werner G. Müller,et al.  Collecting Spatial Data: Optimum Design of Experiments for Random Fields , 1998 .

[13]  Maciej Patan,et al.  A Parallel Sensor Scheduling Technique for Fault Detection in Distributed Parameter Systems , 2008, Euro-Par.

[14]  Carlos S. Kubrusly,et al.  Sensors and controllers location in distributed systems - A survey , 1985, Autom..

[15]  Maciej Patan,et al.  Optimal observation strategies for model-based fault detection in distributed systems , 2005 .

[16]  Francesco Bullo,et al.  Optimal sensor placement and motion coordination for target tracking , 2006, Autom..

[17]  Maciej Patan,et al.  Decentralized mobile sensor routing for parameter estimation of distributed systems , 2009 .

[18]  Maciej Patan,et al.  Time-constrained sensor scheduling for parameter estimation of distributed systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[19]  Michael A. Demetriou Activation Policy of Smart Controllers for Flexible Structures with Multiple Actuator/Sensor Pairs , 2000 .

[20]  D. Ucinski Optimal sensor location for parameter estimation of distributed processes , 2000 .

[21]  Arye Nehorai,et al.  Landmine detection and localization using chemical sensor array processing , 2000, IEEE Trans. Signal Process..

[22]  Maciej Patan,et al.  Optimal Observation Strategies for Parameter Estimation of Distributed Systems , 2004 .

[23]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[24]  M. Rao Measure Theory and Integration , 2018 .

[25]  YangQuan Chen,et al.  Resource-Constrained Sensor Routing for Parameter Estimation of Distributed Systems , 2008 .

[26]  Maciej Patan,et al.  Sensor scheduling with selection of input experimental conditions for identification of distributed systems , 2010, 2010 15th International Conference on Methods and Models in Automation and Robotics.

[27]  E. Rafajłowicz Optimal experiment design for identification of linear distributed-parameter systems: Frequency domain approach , 1983 .

[28]  E. Rafajłowicz Optimum choice of moving sensor trajectories for distributed-parameter system identification , 1986 .

[29]  YangQuan Chen,et al.  Optimal Observation for Cyber-physical Systems , 2009 .

[30]  Michael A. Demetriou,et al.  Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network , 2009, SIAM J. Control. Optim..

[31]  M.A. Demetriou,et al.  An approach to the optimal scanning measurement problem using optimum experimental design , 2004, Proceedings of the 2004 American Control Conference.

[32]  Maciej Patan,et al.  Configuring A Sensor Network for Fault Detection in Distributed Parameter Systems , 2008, Int. J. Appl. Math. Comput. Sci..

[33]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[34]  Maciej Patan,et al.  OPTIMAL ACTIVATION STRATEGY OF DISCRETE SCANNING SENSORS FOR FAULT DETECTION IN DISTRIBUTED-PARAMETER SYSTEMS , 2005 .

[35]  Stephen P. Boyd,et al.  Fast linear iterations for distributed averaging , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[36]  Marc M. J. van de Wal,et al.  A review of methods for input/output selection , 2001, Autom..

[37]  Maciej Patan,et al.  Sensor network design for the estimation of spatially distributed processes , 2010, Int. J. Appl. Math. Comput. Sci..

[38]  Steven E. Rigdon,et al.  Model-Oriented Design of Experiments , 1997, Technometrics.

[39]  Sulema Aranda,et al.  On Optimal Sensor Placement and Motion Coordination for Target Tracking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[40]  D. Ucinski Optimal Selection of Measurement Locations for Parameter Estimation in Distributed Processes , 2000 .

[41]  Johannes Gehrke,et al.  Gossip-based computation of aggregate information , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[42]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[43]  YangQuan Chen,et al.  Time–Optimal Path Planning of Moving Sensors for Parameter Estimation of Distributed Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[44]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[45]  Christos G. Cassandras,et al.  Sensor Networks and Cooperative Control , 2005, CDC 2005.

[46]  A. Vande Wouwer,et al.  Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design , 1996 .

[47]  YangQuan Chen,et al.  Optimal Observation for Cyber-physical Systems: A Fisher-information-matrix-based Approach , 2009 .