Effects of CO-dark Gas on Measurements of Molecular Cloud Stability and the Size–Linewidth Relationship

Stars form within molecular clouds, so characterizing the physical states of molecular clouds is key to understanding the process of star formation. Cloud structure and stability are frequently assessed using metrics including the virial parameter and Larson scaling relationships between cloud radius, velocity dispersion, and surface density. Departures from the typical Galactic relationships between these quantities have been observed in low-metallicity environments. The amount of H2 gas in cloud envelopes without corresponding CO emission is expected to be high under these conditions; therefore, this CO-dark gas could plausibly be responsible for the observed variations in cloud properties. We derive simple corrections that can be applied to empirical clump properties (mass, radius, velocity dispersion, surface density, and virial parameter) to account for CO-dark gas in clumps following power-law and Plummer mass density profiles. We find that CO-dark gas is not likely to be the cause of departures from Larson’s relationships in low-metallicity regions, but that virial parameters may be systematically overestimated. We demonstrate that correcting for CO-dark gas is critical for accurately comparing the dynamical state and evolution of molecular clouds across diverse environments.

[1]  K. Menten,et al.  The evolution of temperature and density structures of OB cluster-forming molecular clumps , 2021, Astronomy & Astrophysics.

[2]  T. Ensslin,et al.  On the Three-dimensional Structure of Local Molecular Clouds , 2021, The Astrophysical Journal.

[3]  R. Klessen,et al.  PHANGS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies , 2021, The Astrophysical Journal Supplement Series.

[4]  E. Ostriker,et al.  The Environmental Dependence of the XCO Conversion Factor , 2020, The Astrophysical Journal.

[5]  A. Bolatto,et al.  Resolved star formation in the metal-poor star-forming region Magellanic Bridge C , 2020, 2009.11868.

[6]  A. Pasquali,et al.  A New Parameterization of the Star Formation Rate Dense Gas Mass Relation: Embracing Gas Density Gradients , 2020, The Astrophysical Journal.

[7]  N. Abel,et al.  Tracing the total molecular gas in galaxies: [CII] and the CO-dark gas , 2020, Astronomy & Astrophysics.

[8]  A. Bolatto,et al.  ALMA resolves molecular clouds in metal-poor Magellanic Bridge A , 2020, Astronomy & Astrophysics.

[9]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[10]  W. Vacca,et al.  The CO-dark molecular gas mass in 30 Doradus , 2020, 2004.09516.

[11]  R. Klessen,et al.  The Molecular Cloud Lifecycle , 2020, Space science reviews.

[12]  G. Parmentier Molecular Clumps Disguising Their Star Formation Efficiency per Free-fall Time: What We Can Do Not to Be Fooled , 2020, The Astrophysical Journal.

[13]  S. Glover,et al.  Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-forming Galaxies , 2020, The Astrophysical Journal.

[14]  P. P. van der Werf,et al.  Molecular clouds in the Cosmic Snake normal star-forming galaxy 8 billion years ago , 2019, Nature Astronomy.

[15]  A. Leroy,et al.  How Galactic Environment Affects the Dynamical State of Molecular Clouds and Their Star Formation Efficiency , 2019, The Astrophysical Journal.

[16]  R. Klessen,et al.  Relations between Molecular Cloud Structure Sizes and Line Widths in the Large Magellanic Cloud , 2019, The Astrophysical Journal.

[17]  A. Palau,et al.  Global hierarchical collapse in molecular clouds. Towards a comprehensive scenario , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  R. Kennicutt,et al.  Revisiting the Integrated Star Formation Law. I. Non-starbursting Galaxies , 2019, The Astrophysical Journal.

[19]  A. Goodman,et al.  Droplets. I. Pressure-dominated Coherent Structures in L1688 and B18 , 2018, The Astrophysical Journal.

[20]  R. Davé,et al.  Dark Molecular Gas in Simulations of z ∼ 0 Disk Galaxies , 2018, The Astrophysical Journal.

[21]  B. Groves,et al.  Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies , 2018, The Astrophysical Journal.

[22]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[23]  E. Ostriker,et al.  The XCO Conversion Factor from Galactic Multiphase ISM Simulations , 2018, 1803.09822.

[24]  A. Giorgio,et al.  Testing the Larson relations in massive clumps , 2018, 1803.08929.

[25]  P. Koch,et al.  The Properties of Planck Galactic Cold Clumps in the L1495 Dark Cloud , 2018, 1802.05378.

[26]  E. Pellegrini,et al.  First Results from the Herschel and ALMA Spectroscopic Surveys of the SMC: The Relationship between [C ii]-bright Gas and CO-bright Gas at Low Metallicity , 2018, 1801.03518.

[27]  A. Bolatto,et al.  ALMA Observations of N83C in the Early Stage of Star Formation in the Small Magellanic Cloud , 2017, 1706.04871.

[28]  Mubdi Rahman,et al.  What Sets the Massive Star Formation Rates and Efficiencies of Giant Molecular Clouds? , 2017, 1704.06965.

[29]  A. Bolatto,et al.  Physical Properties of Molecular Clouds at 2 pc Resolution in the Low-metallicity Dwarf Galaxy NGC 6822 and the Milky Way , 2017, 1701.02748.

[30]  R. Klessen,et al.  How well does CO emission measure the H2 mass of MCs , 2016, 1604.04545.

[31]  K. Pattle An analytical model for the evolution of starless cores – I. The constant-mass case , 2016, 1603.09591.

[32]  M. Rubio,et al.  Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM , 2015, Nature.

[33]  S. Glover,et al.  Does the CO-to-H2 conversion factor depend on the star formation rate? , 2015, 1506.06503.

[34]  R. Klessen,et al.  Structure analysis of simulated molecular clouds with the Δ-variance , 2015, 1504.07137.

[35]  L. Girardi,et al.  The VMC survey - XIV. First results on the look-back time star formation rate tomography of the Small Magellanic Cloud , 2015, 1501.05347.

[36]  C. Dobbs The interstellar medium and star formation on kpc size scales , 2014, 1412.2911.

[37]  R. Klessen,et al.  CO-dark gas and molecular filaments in Milky Way-type galaxies , 2014, 1403.1589.

[38]  P. Goldsmith,et al.  A Herschel (C II) Galactic plane survey II. CO-dark H2 in clouds , 2013, 1312.3320.

[39]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[40]  P. Goldsmith,et al.  A Herschel [C ii] Galactic plane survey - I. The global distribution of ISM gas components , 2013, 1304.7770.

[41]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[42]  N. Peretto,et al.  Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? , 2012, 1211.6360.

[43]  L. V. Tóth,et al.  Galactic cold cores , 2012, Proceedings of the International Astronomical Union.

[44]  Christopher N. Beaumont,et al.  The linewidth-size relationship in the dense ISM of the Central Molecular Zone , 2012, 1206.5803.

[45]  T. Onishi,et al.  Dark gas in the solar neighborhood from extinction data , 2012, 1205.3384.

[46]  C. Kramer,et al.  LOW CO LUMINOSITIES IN DWARF GALAXIES , 2012, 1203.4231.

[47]  Linda J. Smith,et al.  SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). I. OVERVIEW , 2011, 1107.4313.

[48]  Does external pressure explain recent results for molecular clouds , 2011, 1106.3017.

[49]  S. Glover,et al.  Is molecular gas necessary for star formation , 2011, 1105.3073.

[50]  R. Klessen,et al.  Modelling CO emission – II. The physical characteristics that determine the X factor in Galactic molecular clouds , 2011, 1104.3695.

[51]  N. Peretto,et al.  Astronomy Astrophysics Letter to the Editor Characterizing interstellar filaments with Herschel in IC 5146 ⋆,⋆⋆ , 2022 .

[52]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[53]  R. Klessen,et al.  Modelling CO emission – I. CO as a column density tracer and the X factor in molecular clouds , 2010, 1011.2019.

[54]  J. Ballesteros-Paredes,et al.  Gravity or turbulence? Velocity dispersion–size relation , 2010, 1009.1583.

[55]  R. Klessen,et al.  Importance of the Initial Conditions for Star Formation - I. Cloud Evolution and Morphology , 2010, 1008.5255.

[56]  [CII] observations of H2 molecular layers in transition clouds , 2010, 1007.3338.

[57]  W. Reach,et al.  Physical properties of giant molecular clouds in the Large Magellanic Cloud , 2010, 1004.2094.

[58]  S. Glover,et al.  On the relationship between molecular hydrogen and carbon monoxide abundances in molecular clouds , 2010, 1003.1340.

[59]  R. Klessen,et al.  Modelling CO formation in the turbulent interstellar medium , 2009, 0907.4081.

[60]  C. Brunt,et al.  Turbulent Driving Scales in Molecular Clouds , 2009, 0910.0398.

[61]  M. Sauvage,et al.  Probing the dust properties of galaxies up to submillimetre wavelengths. I. The spectral energy dist , 2009, 0910.0043.

[62]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[63]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[64]  U. Chile,et al.  The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN. I. Catalog of Molecular Clouds , 2008, 0804.1458.

[65]  D. Calzetti,et al.  Star Formation in NGC 5194 (M51a). II. The Spatially Resolved Star Formation Law , 2007, 0708.0922.

[66]  M. Dopita,et al.  A Catalog of H I Clouds in the Large Magellanic Cloud , 2007, 0706.1292.

[67]  L. Mundy,et al.  Dense Cores with Multiple Protostars: The Velocity Fields of L1448 IRS 3, NGC 1333 IRAS 2, and NGC 1333 IRAS 4 , 2006 .

[68]  M. Lombardi,et al.  The COMPLETE Survey of star-forming regions: Phase I data , 2006, astro-ph/0602542.

[69]  M. Sauvage,et al.  ISM properties in low-metallicity environments I. mid-infrared spectra of dwarf galaxies , 2005, astro-ph/0510086.

[70]  Isabelle A. Grenier,et al.  Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood , 2005, Science.

[71]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[72]  Y. Sekimoto,et al.  N2H+ Observations of Molecular Cloud Cores in Taurus , 2004, astro-ph/0401584.

[73]  P. Caselli,et al.  Dense Cores in Dark Clouds. XIV. N2H+ (1-0) Maps of Dense Cloud Cores , 2002, astro-ph/0202173.

[74]  A. Miyazaki,et al.  Statistical Properties of Molecular Clouds in the Galactic Center , 2001 .

[75]  A. Whitworth,et al.  An Empirical Model for Protostellar Collapse , 2000, astro-ph/0009325.

[76]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[77]  P. Caselli,et al.  The Line Width--Size Relation in Massive Cloud Cores , 1995 .

[78]  F. Bertoldi,et al.  Pressure-confined clumps in magnetized molecular clouds , 1992 .

[79]  A. Wolfendale,et al.  Corrections to virial estimates of molecular cloud masses , 1988 .

[80]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[81]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[82]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .