60 YEARS OF NEUROENDOCRINOLOGY: Biology of human craniopharyngioma: lessons from mouse models.

Adamantinomatous craniopharyngiomas (ACP) are clinically relevant tumours that are associated with high morbidity, poor quality of life and occasional mortality. Human and mouse studies have provided important insights into the biology of these aggressive tumours, and we are starting to understand why, how and when these tumours develop in humans. Mutations in β-catenin that result in the over-activation of the WNT/β-catenin signalling pathway are critical drivers of most, perhaps of all, human ACPs. Mouse studies have shown that only pituitary embryonic precursors or adult stem cells are able to generate tumours when targeted with oncogenic β-catenin, which suggests that the cell context is critical in order for mutant β-catenin to exert its oncogenic effect. Interestingly, mutant stem cells do not generate the bulk of the tumour cells; instead, they induce tumours in a paracrine manner. Combining basic studies in mice and humans will provide further insights into the biology of these neoplasms and will reveal pathogenic pathways that could be targeted with specific inhibitors for the benefit of patients. These benign tumours may additionally represent a unique model for investigating the early steps that lead to oncogenesis.

[1]  F. Saggioro,et al.  Sonic Hedgehog pathway is upregulated in adamantinomatous craniopharyngiomas. , 2015, European journal of endocrinology.

[2]  C. Swanton,et al.  Can oncology recapitulate paleontology? Lessons from species extinctions , 2015, Nature Reviews Clinical Oncology.

[3]  J. Martinez-Barbera,et al.  Molecular and cellular pathogenesis of adamantinomatous craniopharyngioma , 2015, Neuropathology and applied neurobiology.

[4]  Charles Swanton,et al.  Translational Implications of Tumor Heterogeneity , 2015, Clinical Cancer Research.

[5]  A. Grossman,et al.  The Wnt Signalling Cascade and the Adherens Junction Complex in Craniopharyngioma Tumorigenesis , 2015, Endocrine Pathology.

[6]  N. McGranahan,et al.  Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. , 2015, Cancer cell.

[7]  R. Fahlbusch,et al.  Insights into the Infiltrative Behavior of Adamantinomatous Craniopharyngioma in a New Xenotransplant Mouse Model , 2015, Brain pathology.

[8]  C. Eaves,et al.  Hierarchical organization of fetal and adult hematopoietic stem cells. , 2014, Experimental cell research.

[9]  V. Sondak,et al.  Beyond BRAF: where next for melanoma therapy? , 2014, British Journal of Cancer.

[10]  Pieter Wesseling,et al.  International Society of Neuropathology‐Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading , 2014, Brain pathology.

[11]  G. Long,et al.  Systemic treatment for BRAF-mutant melanoma: where do we go next? , 2014, The Lancet. Oncology.

[12]  M. He,et al.  Fetal Craniopharyngioma: Management, Postmortem Diagnosis, and Literature Review of an Intracranial Tumor Detected in Utero , 2014, Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society.

[13]  Michael Kahn,et al.  Can we safely target the WNT pathway? , 2014, Nature Reviews Drug Discovery.

[14]  A. Salajegheh,et al.  BRAF inhibitors: From the laboratory to clinical trials. , 2014, Critical reviews in oncology/hematology.

[15]  Yanyan Hu,et al.  Pituitary stalk interruption syndrome in 59 children: the value of MRI in assessment of pituitary functions , 2014, European Journal of Pediatrics.

[16]  A. Grossman,et al.  BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma , 2014, Acta Neuropathologica.

[17]  N. Karavitaki Management of craniopharyngiomas , 2014, Journal of Endocrinological Investigation.

[18]  H. Müller Childhood craniopharyngioma: treatment strategies and outcomes , 2014, Expert review of neurotherapeutics.

[19]  R. Rabadán,et al.  Leukemogenesis Induced by an Activating β-catenin mutation in Osteoblasts , 2014, Nature.

[20]  M. Ghert,et al.  Lost in translation: animal models and clinical trials in cancer treatment. , 2014, American journal of translational research.

[21]  John Y. K. Lee,et al.  Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas , 2014, Nature Genetics.

[22]  F. Saran,et al.  Radiotherapy in craniopharyngiomas. , 2013, Clinical oncology (Royal College of Radiologists (Great Britain)).

[23]  M. Dattani,et al.  Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. , 2013, Cell stem cell.

[24]  Yun-Bo Shi,et al.  Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis , 2013, BMC Genomics.

[25]  L. Bystrykh,et al.  Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. , 2013, Blood.

[26]  J. Eloy,et al.  Molecular oncogenesis of craniopharyngioma: current and future strategies for the development of targeted therapies. , 2013, Journal of neurosurgery.

[27]  A. Kulkarni,et al.  Trends in treatment and outcomes of pediatric craniopharyngioma, 1975-2011. , 2013, Neuro-oncology.

[28]  Darjus F. Tschaharganeh,et al.  Non-Cell-Autonomous Tumor Suppression by p53 , 2013, Cell.

[29]  D. Van Roost,et al.  Treatment of Cystic Craniopharyngioma by Endocavitary Instillation of Yttrium90 Radioisotope—Still a Valuable Treatment Option , 2013, Journal of Neurological Surgery—Part A.

[30]  O. Ansorge,et al.  Pathology and pathogenesis of craniopharyngiomas , 2013, Pituitary.

[31]  R. Moon,et al.  WNT signalling pathways as therapeutic targets in cancer , 2012, Nature Reviews Cancer.

[32]  C. You,et al.  Intracystic bleomycin for cystic craniopharyngiomas in children (abridged republication of cochrane systematic review). , 2012, Neurosurgery.

[33]  J. Wisoff Commentary: intracystic bleomycin for cystic craniopharyngiomas in children (abridged republication of cochrane systematic review). , 2012, Neurosurgery.

[34]  S. A. Jayakody,et al.  SOX2 regulates the hypothalamic-pituitary axis at multiple levels. , 2012, The Journal of clinical investigation.

[35]  J. Visvader,et al.  Cancer stem cells: current status and evolving complexities. , 2012, Cell stem cell.

[36]  S. Hettige,et al.  Malignant transformation in craniopharyngiomas. , 2012, Neurosurgery.

[37]  C. Begley,et al.  Drug development: Raise standards for preclinical cancer research , 2012, Nature.

[38]  J. Martinez-Barbera,et al.  Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma , 2012, Acta Neuropathologica.

[39]  Peter Dirks,et al.  Cancer stem cells: an evolving concept , 2012, Nature Reviews Cancer.

[40]  J. Drake,et al.  Intracystic Therapies for Cystic Craniopharyngioma in Childhood , 2011, Front. Endocrin..

[41]  J. Hamilton,et al.  Long Term Sequelae of Pediatric Craniopharyngioma – Literature Review and 20 Years of Experience , 2011, Front. Endocrin..

[42]  J. Wesche,et al.  Fibroblast growth factors and their receptors in cancer. , 2011, The Biochemical journal.

[43]  K. Flaherty,et al.  BRAF targeted therapy changes the treatment paradigm in melanoma , 2011, Nature Reviews Clinical Oncology.

[44]  S. A. Jayakody,et al.  Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans , 2011, Proceedings of the National Academy of Sciences.

[45]  I. Blümcke,et al.  EGFR Signaling Regulates Tumor Cell Migration in Craniopharyngiomas , 2011, Clinical Cancer Research.

[46]  S. Camper,et al.  Birthdating studies reshape models for pituitary gland cell specification. , 2011, Developmental biology.

[47]  P. Laurberg,et al.  Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults , 2011, Journal of Neuro-Oncology.

[48]  A. Algra,et al.  Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials , 2010, The Lancet.

[49]  H. Müller Childhood craniopharyngioma—current concepts in diagnosis, therapy and follow-up , 2010, Nature Reviews Endocrinology.

[50]  C. Fanali,et al.  The role of inflammation in the genesis of the cystic component of craniopharyngiomas , 2010, Child's Nervous System.

[51]  J. Lin,et al.  Expression of aberrant β-catenin and impaired p63 in craniopharyngiomas , 2010, British journal of neurosurgery.

[52]  H. Müller Childhood craniopharyngioma: current controversies on management in diagnostics, treatment and follow-up , 2010, Expert review of neurotherapeutics.

[53]  T. Merchant,et al.  Radiation therapy for pediatric craniopharyngioma. , 2010, Neurosurgical focus.

[54]  I. Blümcke,et al.  Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling , 2010, Acta Neuropathologica.

[55]  T. Merchant,et al.  Malignant transformation of irradiated craniopharyngioma in children: report of 2 cases. , 2010, Journal of neurosurgery. Pediatrics.

[56]  Jeremy Stinson,et al.  Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. , 2009, The New England journal of medicine.

[57]  I. Blümcke,et al.  Target Gene Activation of the Wnt Signaling Pathway in Nuclear β‐Catenin Accumulating Cells of Adamantinomatous Craniopharyngiomas , 2009, Brain pathology.

[58]  Raphael Kopan,et al.  Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. , 2009, Cancer cell.

[59]  G. A. Gallego,et al.  Biology of BMP signalling and cancer. , 2009 .

[60]  M. Malumbres,et al.  A GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary , 2009, PloS one.

[61]  S. Bilodeau,et al.  Distinct Developmental Roles of Cell Cycle Inhibitors p57Kip2 and p27Kip1 Distinguish Pituitary Progenitor Cell Cycle Exit from Cell Cycle Reentry of Differentiated Cells , 2009, Molecular and Cellular Biology.

[62]  R. Lovell-Badge,et al.  SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland , 2008, Proceedings of the National Academy of Sciences.

[63]  J. V. van Dongen,et al.  The human androgen receptor X-chromosome inactivation assay for clonality diagnostics of natural killer cell proliferations. , 2007, The Journal of molecular diagnostics : JMD.

[64]  I. Blümcke,et al.  Nuclear β-catenin accumulation associates with epithelial morphogenesis in craniopharyngiomas , 2007, Acta Neuropathologica.

[65]  I. Blümcke,et al.  Nuclear β-Catenin Accumulation as Reliable Marker for the Differentiation Between Cystic Craniopharyngiomas and Rathke Cleft Cysts: A Clinico-Pathologic Approach , 2006, The American journal of surgical pathology.

[66]  C. Bolger,et al.  Primary cerebellopontine angle craniopharyngioma in a patient with gardner syndrome. Case report and review of the literature. , 2006, Journal of neurosurgery.

[67]  M. Rosenfeld,et al.  Homeodomain-Mediated β-Catenin-Dependent Switching Events Dictate Cell-Lineage Determination , 2006, Cell.

[68]  T. Merchant Craniopharyngioma radiotherapy: endocrine and cognitive effects. , 2006, Journal of pediatric endocrinology & metabolism : JPEM.

[69]  M. Buchfelder,et al.  β-catenin mutations in craniopharyngiomas and pituitary adenomas , 2005, Journal of Neuro-Oncology.

[70]  R. Fahlbusch,et al.  Common mutations of β-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region , 2005, Acta Neuropathologica.

[71]  J. Warner,et al.  Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long‐term follow‐up , 2005, Clinical endocrinology.

[72]  S. Hirohashi,et al.  Expression of enamel proteins and LEF1 in adamantinomatous craniopharyngioma: evidence for its odontogenic epithelial differentiation , 2004, Histopathology.

[73]  J. Squire,et al.  Comparative genomic hybridization analysis of pediatric adamantinomatous craniopharyngiomas and a review of the literature. , 2004, Journal of neurosurgery.

[74]  A. Emser,et al.  Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. , 2004, The Journal of clinical endocrinology and metabolism.

[75]  K. Tachibana,et al.  Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma , 2004, The Journal of pathology.

[76]  M. Başkaya,et al.  An Alternative Extradural Exposure to the Anterior Clinoid Process: The Superior Orbital Fissure as a Surgical Corridor , 2003, Neurosurgery.

[77]  Hans Clevers,et al.  Notch1 functions as a tumor suppressor in mouse skin , 2003, Nature Genetics.

[78]  W. Paulus,et al.  Lack of chromosomal imbalances in adamantinomatous and papillary craniopharyngiomas , 2003, Journal of neurology, neurosurgery, and psychiatry.

[79]  S. Hirohashi,et al.  Short Communication Craniopharyngiomas of Adamantinomatous Type Harbor -Catenin Gene Mutations , 2002 .

[80]  E. Friedman,et al.  Clonal composition of human adamantinomatous craniopharyngiomas and somatic mutation analyses of the patched (PTCH), Gsα and Gi2α genes , 2001, Neuroscience Letters.

[81]  J. Bruner,et al.  The descriptive epidemiology of craniopharyngioma. , 1998, Neurosurgical focus.

[82]  Jörg Stappert,et al.  β‐catenin is a target for the ubiquitin–proteasome pathway , 1997 .

[83]  M. Choux,et al.  Cytogenetic studies in 45 pediatric brain tumors. , 1992, Pediatric hematology and oncology.

[84]  L. McMorrow,et al.  Multiple chromosomal abnormalities in a case of craniopharyngioma. , 1992, Cancer genetics and cytogenetics.

[85]  C. Griffin,et al.  Chromosome abnormalities in low-grade central nervous system tumors. , 1992, Cancer genetics and cytogenetics.

[86]  F. Gilles,et al.  Cytogenetic analysis of 39 pediatric central nervous system tumors. , 1992, Cancer genetics and cytogenetics.

[87]  R. Buslei,et al.  Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models , 2015, Journal of pediatric endocrinology & metabolism : JPEM.

[88]  Chunde Li,et al.  High expression levels of CXCL12 and CXCR4 predict recurrence of adamanti-nomatous craniopharyngiomas in children. , 2014, Cancer biomarkers : section A of Disease markers.

[89]  E. Friedman,et al.  Comparative genomic hybridization analysis of craniopharyngiomas. , 2003, Journal of neurosurgery.

[90]  L. Abernethy Imaging of the pituitary in children with growth disorders. , 1998, European journal of radiology.