An Approach Based on Z Language for Formalization of Model Transformation Definition

The creation of transformation definition is an important step in the process of model transformation in the context of Model Driven Engineering. However, the manual creation of transformation definition is vulnerable to ambiguity due to miss interpretation of the metamodels and their relationships or due to human factors like fatigue. In this paper, we propose an approach based on the Z formal language for specifying the transformation definition. Firstly, transformation rules are specified in Z language, and then validated by a testing tool called Z/EVES that supports statements in first-order predicate logic and set theory. Afterwards, the formalism in Z is translated in a transformation language such as ATL. An illustrative example is provided in order to demonstrate our approach.

[1]  Banshi Dhar Chaudhary,et al.  A Z-Specification of Classification and Relationships between Usecases , 2008, 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing.

[2]  Zhong-jie Qiu,et al.  Deriving User Interfaces from UML Models and Object -Z , 2009, 2009 International Conference on Computer Engineering and Technology.

[3]  Jane Sinclair,et al.  Introduction to formal specification and Z , 1991, Prentice Hall International Series in Computer Science.

[4]  Jean Bézivin,et al.  Generating Transformation Definition from Mapping Specification: Application to Web Service Platform , 2005, CAiSE.

[5]  Jean Bézivin,et al.  Applying MDA approach for Web service platform , 2004 .

[6]  S. Mirian-Hosseinabadi,et al.  Derivation of Z functional input/output refinement proof rules , 2010, 2010 International Conference on Electronics and Information Engineering.

[7]  Maryam Lotfi Shahreza,et al.  Specification and Development of Database Applications Based on Z and SQL , 2009, 2009 International Conference on Information Management and Engineering.

[8]  Jim Woodcock,et al.  Using Z - specification, refinement, and proof , 1996, Prentice Hall international series in computer science.

[9]  Ib Holm Sørensen A Specification Language , 1981, Program Specification.

[10]  Jean-Marie Favre,et al.  Towards a Basic Theory to Model Model Driven Engineering , 2004 .

[11]  Anneke Kleppe,et al.  MDA explained - the Model Driven Architecture: practice and promise , 2003, Addison Wesley object technology series.

[12]  J. Michael Spivey,et al.  The Z notation - a reference manual , 1992, Prentice Hall International Series in Computer Science.