Area-preserving geometric Hermite interpolation

Abstract In this paper we establish a framework for planar geometric interpolation with exact area preservation using cubic Bezier polynomials. We show there exists a family of such curves which are 5th order accurate, one order higher than standard geometric cubic Hermite interpolation. We prove this result is valid when the curvature at the endpoints does not vanish, and in the case of vanishing curvature, the interpolation is 4th order accurate. The method is computationally efficient and prescribes the parametrization speed at endpoints through an explicit formula based on the given data. Additional accuracy (i.e. same order but lower error constant) may be obtained through an iterative process to find optimal parametrization speeds which further reduces the error while still preserving the prescribed area exactly.

[1]  Tony DeRose,et al.  Geometric continuity of parametric curves: three equivalent characterizations , 1989, IEEE Computer Graphics and Applications.

[2]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[3]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[4]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[5]  Rida T. Farouki,et al.  Construction of G1 planar Hermite interpolants with prescribed arc lengths , 2016, Comput. Aided Geom. Des..

[6]  Qianqian Hu,et al.  Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization , 2018, Comput. Graph..

[7]  Rida T. Farouki,et al.  Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves , 2002, Adv. Comput. Math..

[8]  Benjamin Seibold,et al.  A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..

[9]  Gasper Jaklic,et al.  Planar cubic G1 interpolatory splines with small strain energy , 2011, J. Comput. Appl. Math..

[10]  Jun-Hai Yong,et al.  Geometric Hermite curves with minimum strain energy , 2004, Comput. Aided Geom. Des..

[11]  Rida T. Farouki,et al.  1. Pythagorean - Hodograph Curves in Practical Use , 1992, Geometry Processing for Design and Manufacturing.

[12]  J. A. Gregory Geometric continuity , 1989 .

[13]  Malcolm A. Sabin,et al.  High accuracy geometric Hermite interpolation , 1987, Comput. Aided Geom. Des..

[14]  R. LeVeque Numerical methods for conservation laws , 1990 .

[15]  Lizheng Lu,et al.  Planar quintic G2 Hermite interpolation with minimum strain energy , 2015, J. Comput. Appl. Math..

[16]  Benjamin Seibold,et al.  An exactly conservative particle method for one dimensional scalar conservation laws , 2008, J. Comput. Phys..

[17]  Gasper Jaklic,et al.  Curvature variation minimizing cubic Hermite interpolants , 2011, Appl. Math. Comput..

[18]  J. Koch,et al.  Geometric Hermite interpolation with maximal orderand smoothness , 1996, Comput. Aided Geom. Des..

[19]  Benjamin Seibold,et al.  Jet schemes for advection problems , 2011, 1101.5374.

[20]  Carla Manni,et al.  Identification of spatial PH quintic Hermite interpolants with near-optimal shape measures , 2008, Comput. Aided Geom. Des..

[21]  J. Koch,et al.  Geometric Hermite interpolation , 1995, Comput. Aided Geom. Des..

[22]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[23]  Jean-Christophe Nave,et al.  On the Arbitrarily Long-Term Stability of Conservative Methods , 2016, SIAM J. Numer. Anal..

[24]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.