Generalized normal forms and polynomial system solving
暂无分享,去创建一个
[1] Martin Kreuzer,et al. An algebraist’s view on border bases , 2005 .
[2] Solen Corvez,et al. Using Computer Algebra Tools to Classify Serial Manipulators , 2002, Automated Deduction in Geometry.
[3] M. Gasca,et al. Multivariate Polynomial Interpolation , 1990 .
[4] Bernard Mourrain,et al. Solving projective complete intersection faster , 2000, ISSAC.
[5] H. Stetter,et al. An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .
[6] Fabrice Rouillier,et al. Symbolic Recipes for Polynomial System Solving , 1999 .
[7] D. Kirby. THE ALGEBRAIC THEORY OF MODULAR SYSTEMS , 1996 .
[8] Philippe Trébuchet. Generalized Normal Forms for polynomial system solving , 2006 .
[9] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[10] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[11] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[12] Nicholas M. Patrikalakis,et al. Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.
[13] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[14] Bernard Mourrain,et al. Using projection operators in computer aided geometric design , 2003 .
[15] Fabrice Rouillier,et al. Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .
[16] Daniel Lazard,et al. Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..
[17] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[18] Philippe Trébuchet. Vers une résolution stable et rapide des équations algébriques , 2002 .
[19] F. S. Macaulay. Some Formulæ in Elimination , 1902 .
[20] Bernard Mourrain,et al. The 40 “generic” positions of a parallel robot , 1993, ISSAC '93.
[21] Marie-Françoise Roy,et al. Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .
[22] Bernard Mourrain,et al. Matrices in Elimination Theory , 1999, J. Symb. Comput..
[23] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[24] Fabrice Rouillier,et al. Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.
[25] Bernard Mourrain,et al. A New Criterion for Normal Form Algorithms , 1999, AAECC.
[26] Hans J. Stetter,et al. Numerical polynomial algebra , 2004 .
[27] Tomas Sauer,et al. H-bases for polynomial interpolation and system solving , 2000, Adv. Comput. Math..
[28] Bernard Mourrain,et al. Computing the Isolated Roots by Matrix Methods , 1998, J. Symb. Comput..
[29] Robert M. Corless,et al. A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots , 1997, ISSAC.