Generalized normal forms and polynomial system solving

This paper describes a new method for computing the normal form of a polynomial modulo a zero-dimensional ideal I. We give a detailed description of the algorithm, a proof of its correctness, and finally experimentations on classical benchmark polynomial systems. The method that we propose can be thought as an extension of both the Gröbner basis method and the Macaulay construction. We have weaken the monomial ordering requirement for bases computations, which allows us to construct new type of representations for the quotient algebra. This approach yields more freedom in the linear algebra steps involved, which allows us to take into account numerical criteria while performing the symbolic steps. This is a new feature for a symbolic algorithm, which has a huge impact on the practical efficiency.

[1]  Martin Kreuzer,et al.  An algebraist’s view on border bases , 2005 .

[2]  Solen Corvez,et al.  Using Computer Algebra Tools to Classify Serial Manipulators , 2002, Automated Deduction in Geometry.

[3]  M. Gasca,et al.  Multivariate Polynomial Interpolation , 1990 .

[4]  Bernard Mourrain,et al.  Solving projective complete intersection faster , 2000, ISSAC.

[5]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[6]  Fabrice Rouillier,et al.  Symbolic Recipes for Polynomial System Solving , 1999 .

[7]  D. Kirby THE ALGEBRAIC THEORY OF MODULAR SYSTEMS , 1996 .

[8]  Philippe Trébuchet Generalized Normal Forms for polynomial system solving , 2006 .

[9]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[10]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[11]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[12]  Nicholas M. Patrikalakis,et al.  Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.

[13]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[14]  Bernard Mourrain,et al.  Using projection operators in computer aided geometric design , 2003 .

[15]  Fabrice Rouillier,et al.  Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .

[16]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[17]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[18]  Philippe Trébuchet Vers une résolution stable et rapide des équations algébriques , 2002 .

[19]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[20]  Bernard Mourrain,et al.  The 40 “generic” positions of a parallel robot , 1993, ISSAC '93.

[21]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[22]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[23]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[24]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[25]  Bernard Mourrain,et al.  A New Criterion for Normal Form Algorithms , 1999, AAECC.

[26]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[27]  Tomas Sauer,et al.  H-bases for polynomial interpolation and system solving , 2000, Adv. Comput. Math..

[28]  Bernard Mourrain,et al.  Computing the Isolated Roots by Matrix Methods , 1998, J. Symb. Comput..

[29]  Robert M. Corless,et al.  A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots , 1997, ISSAC.