Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron.

Mixed-mode dynamics is a complex type of dynamical behavior that has been observed both numerically and experimentally in numerous prototypical systems in the natural sciences. The compartmental Wilson-Callaway model for the dopaminergic neuron is an example of a system that exhibits a wide variety of mixed-mode patterns upon variation of a control parameter. One characteristic feature of this system is the presence of multiple time scales. In this article, we study the Wilson-Callaway model from a geometric point of view. We show that the observed mixed-mode dynamics is caused by a slowly varying canard structure. By appropriately transforming the model equations, we reduce them to an underlying three-dimensional canonical form that can be analyzed via a slight adaptation of the approach developed by M. Krupa, N. Popovic, and N. Kopell (unpublished).

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Horace Traubel Collect , 1904 .

[4]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[5]  Ferdinand Verhulst Asymptotic Analysis II , 1983 .

[6]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[7]  Rajesh Sharma,et al.  Asymptotic analysis , 1986 .

[8]  B. M. Fulk MATH , 1992 .

[9]  Dana Schlomiuk,et al.  Bifurcations and Periodic Orbits of Vector Fields , 1993 .

[10]  丁東鎭 12 , 1993, Algo habla con mi voz.

[11]  Freddy Dumortier,et al.  Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .

[12]  J. Rinzel,et al.  Modeling N-methyl-d-aspartate-induced bursting in dopamine neurons , 1996, Neuroscience.

[13]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .

[14]  C. Wilson,et al.  Coupled oscillator model of the dopaminergic neuron of the substantia nigra. , 2000, Journal of neurophysiology.

[15]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[16]  Nancy Kopell,et al.  Synchronization and Transient Dynamics in the Chains of Electrically Coupled Fitzhugh--Nagumo Oscillators , 2001, SIAM J. Appl. Math..

[17]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[18]  Peter Szmolyan,et al.  Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .

[19]  Jeff Moehlis,et al.  Canards in a Surface Oxidation Reaction , 2002, J. Nonlinear Sci..

[20]  Georgi S. Medvedev,et al.  Multimodal regimes in a compartmental model of the dopamine neuron , 2004 .

[21]  Nancy Kopell,et al.  Dendritic Synchrony and Transient Dynamics in a Coupled Oscillator Model of the Dopaminergic Neuron , 2004, Journal of Computational Neuroscience.

[22]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[23]  Jonathan E. Rubin,et al.  Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.

[24]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.