Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds

[1]  A. Mondino The Conformal Willmore Functional: A Perturbative Approach , 2010, 1010.4151.

[2]  Johannes Schygulla,et al.  Willmore Minimizers with Prescribed Isoperimetric Ratio , 2011, 1103.0167.

[3]  Patrick Breuning Immersions with local Lipschitz representation , 2011 .

[4]  A. Mondino Some results about the existence of critical points for the Willmore functional , 2010 .

[5]  E. Kuwert,et al.  Closed surfaces with bounds on their Willmore energy , 2010, 1009.5286.

[6]  T. Rivière Variational Principles for immersed Surfaces with $L^2$-bounded Second Fundamental Form , 2010, 1007.2997.

[7]  J. Metzger,et al.  Small Surfaces of Willmore Type in Riemannian Manifolds , 2009, 0909.0590.

[8]  J. Metzger,et al.  Foliations of asymptotically flat manifolds by surfaces of Willmore type , 2009, 0903.1277.

[9]  E. Toubiana,et al.  Totally umbilic surfaces in homogeneous 3-manifolds , 2006, math/0604391.

[10]  Benoît Daniel Isometric immersions into 3-dimensional homogeneous manifolds , 2005, math/0503500.

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  L. Simon Existence of surfaces minimizing the Willmore functional , 1993 .

[13]  L. Simon Existence of Willmore surfaces , 1986 .

[14]  Joel Langer,et al.  A compactness theorem for surfaces withLp-bounded second fundamental form , 1985 .

[15]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[16]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[17]  I. Holopainen Riemannian Geometry , 1927, Nature.

[18]  Existence of integral m -varifolds minimizing , 2022 .