Determination of the p-Electron Conduction Parameter of Na-beta-Alumina by Potentiometric Measurements

The p-electron conduction parameter a ⊗ of Na-beta-Al 2 O 3 is determined by quantitatively evaluating the isothermal voltage response of the cell Au|O 2 , CO 2 , Na 2 CO 3 |Na-beta-Al 2 O 3 |NiO, FeO (glass)|FeNi48|Au to successive variations of the sodium activity of the measuring electrode. Within the temperature interval under investigation (320 ≤ T ≤ 620) the results on a ⊗ lie at the upper limit of the scatter range spanned by previous results on this parameter. In a log a ○+ vs. 1/T diagram the data points describe sections of straight lines with two different slopes that are identical with the temperature dependence of either the measuring or the reference electrode potential, respectively, depending on which of these electrodes has the comparatively lower sodium activity. These findings confirm the fact previously observed that a ⊗ is not a constant but adapts to the sodium activity in the surroundings of the electrolyte. It can be understood as a consequence of a variable stoichiometry in the composition of the electrolyte and enables a conclusive account for the apparent differences in the literature with respect to the impact of the electronic conductivity on the behavior of a potentiometric solid-state gas sensor with Na-beta-alumina as electrolyte.

[1]  F. Aldinger,et al.  The equilibrium between Na-β- and Na-β-alumina as a function of the phase composition , 2000 .

[2]  H. Näfe,et al.  How to check the validity of Nernst's law in a potentiometric solid electrolyte galvanic cell , 1998 .

[3]  H. Näfe Current‐Voltage Relation and Charge Distribution in Mixed Ionic‐Electronic Solid Conductors , 1997 .

[4]  P. Shuk,et al.  Solid state systems for the potentiometric determination of CO2 , 1996, Analytical and bioanalytical chemistry.

[5]  H. Näfe,et al.  Electronic conductivity of MgO-doped Na-beta-alumina—a re-evaluation , 1996 .

[6]  H. Näfe Thermodynamic Stability and Electronic Conductivity of Na‐beta‐Alumina , 1996 .

[7]  H. Näfe,et al.  On the defect electron conduction parameter of Nabeta-alumina , 1994 .

[8]  M. Steinbrück,et al.  ELECTRONIC CONDUCTIVITY OF POLYCRYSTALLINE NA-BETA -ALUMINA AT HIGH TEMPERATURES , 1994 .

[9]  H. Näfe The feasibility of a potentiometric CO2 sensor based on Na-beta-alumina in the light of the electronic conductivity of the electrolyte , 1994 .

[10]  H. Näfe Conclusions on the electronic conductivity of Na-β-alumina from the behaviour of a potentiometric CO2 sensor comprising Na-β-alumina as electrolyte , 1994 .

[11]  H. Näfe High-vacuum tight, liquid sodium resistant joint between ThO2 ceramic and metal , 1990 .

[12]  K. Jacob,et al.  An SOx (x = 2, 3) sensor using β-alumina/Na2SO4 couple , 1989 .

[13]  Toshio Maruyama,et al.  Potentiometric gas sensor for carbon dioxide using solid electrolytes , 1987 .

[14]  W. Pies,et al.  I. Barin, O. Knacke, O. Kubaschewski: Thermochemical Properties of Inorganic Substances — Supplement. Springer‐Verlag, Berlin‐Heidelberg‐New York; Verlag Stahleisen, Düsseldorf 1977. 861 Seiten, Preis: DM 170,– , 1978 .

[15]  F. Aldinger,et al.  Mixed ionic-electronic conduction of Na-beta-alu mina under the conditions of a potentiometric CO2 sensor , 1998 .

[16]  H. Näfe,et al.  Electronic conductivity of polycrystalline Na β-alumina at high temperatures. II. Determination of excess electron conductivity by permeation technique , 1994 .

[17]  M. Itoh,et al.  Solid Reference Electrode of SO 2 Sensor Using β-Alumina Solid Electrolyte , 1984 .