Parameter Optimization of Machining Processes Using a New Optimization Algorithm

A new advanced algorithm is proposed for the process parameter optimization of machining processes. This algorithm is inspired by the teaching-learning process, and it works on the effect of influence of a teacher on the output of learners in a class. The results obtained by the proposed new algorithm have outperformed the previous results for the considered machining processes.

[1]  Uday S. Dixit,et al.  Application of soft computing techniques in machining performance prediction and optimization: a literature review , 2010 .

[2]  Erwie Zahara,et al.  Solving constrained optimization problems with hybrid particle swarm optimization , 2008 .

[3]  J. Srinivas,et al.  Prediction of Optimal Cutting States during Inward Turning: An Experimental Approach , 2010 .

[4]  Kaisa Miettinen,et al.  New Perspective to Continuous Casting of Steel with a Hybrid Evolutionary Multiobjective Algorithm , 2011 .

[5]  Nirupam Chakraborti,et al.  Cu―Zn separation by supported liquid membrane analyzed through Multi-objective Genetic Algorithms , 2011 .

[6]  Guang-Yu Zhu,et al.  Drilling path optimization by the particle swarm optimization algorithm with global convergence characteristics , 2008 .

[7]  R. Venkata Rao,et al.  Advanced Modeling and Optimization of Manufacturing Processes , 2010 .

[8]  R. Venkata Rao,et al.  Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods , 2013 .

[9]  Nirupam Chakraborti,et al.  Data-Driven Multiobjective Analysis of Manganese Leaching from Low Grade Sources Using Genetic Algorithms, Genetic Programming, and Other Allied Strategies , 2011 .

[10]  Yi-Chi Wang A note on 'optimization of multi-pass turning operations using ant colony system' , 2007 .

[11]  Ricardo Landa Becerra,et al.  Evolutionary Multiobjective Optimization in Materials Science and Engineering , 2009 .

[12]  R. Venkata Rao,et al.  Advanced Modeling and Optimization of Manufacturing Processes: International Research and Development , 2013 .

[13]  Ahmet Yardimeden,et al.  Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm , 2011 .

[14]  B. Babu,et al.  Multiobjective Optimization of Industrial Processes Using Elitist Multiobjective Differential Evolution (Elitist-MODE) , 2011 .

[15]  V. Soundararajan,et al.  Optimization of Grinding Process Through Design of Experiment (DOE)—A Comparative Study , 2006 .

[16]  Joseph C. Chen,et al.  Surface Roughness Optimization in a Drilling Operation Using the Taguchi Design Method , 2009 .

[17]  João Paulo Davim,et al.  Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm , 2010 .

[18]  Mikko Helle,et al.  Multiobjective Optimization of Top Gas Recycling Conditions in the Blast Furnace by Genetic Algorithms , 2011 .

[19]  Dilbag Singh,et al.  Optimization of Tool Geometry and Cutting Parameters for Hard Turning , 2007 .

[20]  Jagdev Singh,et al.  Fuzzy Modeling and Simulation of Ultrasonic Drilling of Porcelain Ceramic with Hollow Stainless Steel Tools , 2009 .

[21]  K. Palanikumar Modeling and Analysis of Delamination Factor and Surface Roughness in Drilling GFRP Composites , 2010 .

[22]  C. Patvardhan,et al.  Solving Ceramic Grinding Optimization Problem by Adaptive Quantum Evolutionary Algorithm , 2010, 2010 International Conference on Intelligent Systems, Modelling and Simulation.

[23]  S. Ranganathan,et al.  Evaluation of Machining Parameters of Hot Turning of Stainless Steel (Type 316) by Applying ANN and RSM , 2010 .

[24]  Nirupam Chakraborti,et al.  Multiobjective Optimization of Manganese Recovery from Sea Nodules Using Genetic Algorithms , 2008 .

[25]  P. Venkateswara Rao,et al.  The optimisation of the grinding of silicon carbide with diamond wheels using genetic algorithms , 2003 .

[26]  Franci Cus,et al.  Optimization of cutting process by GA approach , 2003 .

[27]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[28]  K. Palanikumar,et al.  Fuzzy Modeling and Analysis of Machining Parameters in Machining Titanium Alloy , 2008 .

[29]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[30]  S. K. Malhotra,et al.  Modeling and Optimization of Process Parameters for Defect Toleranced Drilling of GFRP Composites , 2006 .

[31]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[32]  E. Kilickap,et al.  Selection of Optimum Drilling Parameters on Burr Height Using Response Surface Methodology and Genetic Algorithm in Drilling of AISI 304 Stainless Steel , 2010 .

[33]  Kalyanmoy Deb,et al.  Investigating the Role of Nonmetallic Fillers in Particulate-Reinforced Mold Composites using EAs , 2011 .

[34]  C. L. Lin,et al.  Use of the Taguchi Method and Grey Relational Analysis to Optimize Turning Operations with Multiple Performance Characteristics , 2004 .

[35]  Nirupam Chakraborti,et al.  Phases in Zn-coated Fe analyzed through an evolutionary meta-model and multi-objective Genetic Algorithms , 2011 .

[36]  Godfrey C. Onwubolu,et al.  Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization , 2004 .

[37]  Johannes Weber Please Scroll down for Article , 1992 .

[38]  Steven Y. Liang,et al.  Process Optimization of Finish Turning of Hardened Steels , 2007 .

[39]  Indrajit Mukherjee,et al.  A review of optimization techniques in metal cutting processes , 2006, Comput. Ind. Eng..

[40]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[41]  M. Ghoreishi,et al.  Multi Criteria Optimization of Laser Percussion Drilling Process Using Artificial Neural Network Model Combined with Genetic Algorithm , 2006 .

[42]  B. Latha,et al.  Modeling and Analysis of Surface Roughness Parameters in Drilling GFRP Composites Using Fuzzy Logic , 2010 .

[43]  Du-Ming Tsai,et al.  A simulated annealing approach for optimization of multi-pass turning operations , 1996 .

[44]  J. Paulo Davim,et al.  Prediction and Minimization of Delamination in Drilling of Medium-Density Fiberboard (MDF) Using Response Surface Methodology and Taguchi Design , 2008 .