Human Identification Using Temporal Information Preserving Gait Template

Gait Energy Image (GEI) is an efficient template for human identification by gait. However, such a template loses temporal information in a gait sequence, which is critical to the performance of gait recognition. To address this issue, we develop a novel temporal template, named Chrono-Gait Image (CGI), in this paper. The proposed CGI template first extracts the contour in each gait frame, followed by encoding each of the gait contour images in the same gait sequence with a multichannel mapping function and compositing them to a single CGI. To make the templates robust to a complex surrounding environment, we also propose CGI-based real and synthetic temporal information preserving templates by using different gait periods and contour distortion techniques. Extensive experiments on three benchmark gait databases indicate that, compared with the recently published gait recognition approaches, our CGI-based temporal information preserving approach achieves competitive performance in gait recognition with robustness and efficiency.

[1]  Qing Wang,et al.  A Novel Human Gait Recognition Method by Segmenting and Extracting the Region Variance Feature , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[2]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Rudolf Fleischer,et al.  Distance Approximating Dimension Reduction of Riemannian Manifolds , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Han-Wei Shen,et al.  Chronovolumes: A Direct Rendering Technique for Visualizing Time-Varying Data , 2003, VG.

[5]  Mark S. Nixon,et al.  Gait Feature Subset Selection by Mutual Information , 2007, 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems.

[6]  Gerik Scheuermann,et al.  Multifield visualization using local statistical complexity , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Rama Chellappa,et al.  Identification of humans using gait , 2004, IEEE Transactions on Image Processing.

[9]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[10]  Sudeep Sarkar,et al.  Toward understanding the limits of gait recognition , 2004, SPIE Defense + Commercial Sensing.

[11]  Rudolf Fleischer,et al.  Low-Resolution Gait Recognition , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Tieniu Tan,et al.  Silhouette Analysis-Based Gait Recognition for Human Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Xuelong Li,et al.  Human Gait Recognition With Matrix Representation , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[14]  Kwan-Liu Ma,et al.  Importance-Driven Time-Varying Data Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  R. Pearl Biometrics , 1914, The American Naturalist.

[16]  Rudolf Fleischer,et al.  Multilinear Tensor-Based Non-parametric Dimension Reduction for Gait Recognition , 2009, ICB.

[17]  Tieniu Tan,et al.  Fusion of static and dynamic body biometrics for gait recognition , 2003, IEEE Transactions on Circuits and Systems for Video Technology.

[18]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  M. Nixon,et al.  Model-based Gait Recognition , 2009 .

[20]  Bir Bhanu,et al.  Individual recognition using gait energy image , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  WangChen,et al.  Human Identification Using Temporal Information Preserving Gait Template , 2012 .

[23]  Chen Wang,et al.  Chrono-Gait Image: A Novel Temporal Template for Gait Recognition , 2010, ECCV.

[24]  Tieniu Tan,et al.  A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[25]  Takumi Kobayashi,et al.  Action and simultaneous multiple-person identification using cubic higher-order local auto-correlation , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[26]  Tieniu Tan,et al.  Automatic gait recognition based on statistical shape analysis , 2003, IEEE Trans. Image Process..

[27]  Mark S. Nixon,et al.  What image information is important in silhouette-based gait recognition? , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[28]  Sudeep Sarkar,et al.  Simplest representation yet for gait recognition: averaged silhouette , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[29]  Mark S. Nixon,et al.  On a Large Sequence-Based Human Gait Database , 2004 .

[30]  Sudeep Sarkar,et al.  Improved gait recognition by gait dynamics normalization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Mark S. Nixon,et al.  Model-Based Feature Extraction for Gait Analysis and Recognition , 2007, MIRAGE.

[32]  Rama Chellappa,et al.  A hidden Markov model based framework for recognition of humans from gait sequences , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[33]  Tianxu Zhang,et al.  Local entropy-based transition region extraction and thresholding , 2003, Pattern Recognit. Lett..