Location of Poles for the Hastings–McLeod Solution to the Second Painlevé Equation

We show that the well-known Hastings–McLeod solution to the second Painlevé equation is pole-free in the region $$\arg x \in [-\frac{\pi }{3},\frac{\pi }{3}]\cup [\frac{2\pi }{3},\frac{ 4 \pi }{3}]$$argx∈[-π3,π3]∪[2π3,4π3], which proves an important special case of a general conjecture concerning pole distributions of Painlevé transcedents proposed by Novokshenov. Our strategy is to construct explicit quasi-solutions approximating the Hastings–McLeod solution in different regions of the complex plane and estimate the errors rigorously. The main idea is very similar to the one used to prove Dubrovin’s conjecture for the first Painlevé equation, but there are various technical improvements.

[1]  A A Kapaev,et al.  Quasi-linear Stokes phenomenon for the Painlevé first equation , 2004, nlin/0404026.

[2]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[3]  S. Tanveer,et al.  Rigorous analytical approximation of tritronquee solution to Painleve-1 and the first singularity , 2014, 1412.3782.

[4]  O. Costin,et al.  On the formation of singularities of solutions of nonlinear differential systems in antistokes directions , 2001, math/0202234.

[5]  Bengt Fornberg,et al.  A numerical methodology for the Painlevé equations , 2011, J. Comput. Phys..

[6]  A. Its,et al.  Quasi-linear Stokes phenomenon for the second Painlevé transcendent , 2001, nlin/0108010.

[7]  Bengt Fornberg,et al.  A Computational Exploration of the Second Painlevé Equation , 2014, Found. Comput. Math..

[8]  Athanassios S. Fokas,et al.  Painleve Transcendents: The Riemann-hilbert Approach , 2006 .

[9]  M. Duits,et al.  A critical phenomenon in the two-matrix model in the quartic/quadratic case , 2011, 1111.2162.

[10]  P. Forrester,et al.  Painlevé II in Random Matrix Theory and Related Fields , 2012, 1210.3381.

[11]  D. Masoero Poles of integrále tritronquée and anharmonic oscillators. A WKB approach , 2009, 0909.5537.

[12]  V. Novokshenov Distributions of Poles to Painlevé Transcendents via Padé Approximations , 2014 .

[13]  S. Delvaux,et al.  A phase transition for non-intersecting Brownian motions, and the Painleve II equation , 2008, 0809.1000.

[14]  A. Kuijlaars,et al.  Critical behavior of nonintersecting Brownian motions at a tacnode , 2010, 1009.2457.

[15]  O. Costin On Borel summation and Stokes phenomena for rank-$1$ nonlinear systems of ordinary differential equations , 1998 .

[16]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[17]  M. Bertola On the location of poles for the Ablowitz–Segur family of solutions to the second Painlevé equation , 2012, 1203.2988.

[18]  P. Boutroux,et al.  Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite) , 1913 .

[19]  Tom Claeys,et al.  Universality of the double scaling limit in random matrix models , 2005 .

[20]  O. Costin,et al.  On the spectral properties of L± in three dimensions , 2011, 1107.0323.

[21]  S. Tanveer,et al.  Proof of the Dubrovin conjecture and analysis of the tritronquée solutions of $P_I$ , 2012, 1209.1009.

[22]  V. Yu. Novokshenov,et al.  Padé approximations for Painlevé I and II transcendents , 2009 .

[23]  D. Masoero Poles of intégrale tritronquée and anharmonic oscillators. Asymptotic localization from WKB analysis , 2010, 1002.1042.

[24]  A. Kapaev Global asymptotics of the second Painlevé transcendent , 1992 .

[25]  Boris Dubrovin,et al.  On universality of critical behaviour in the focusing nonlinear Schr\"odinger equation, elliptic umbilic catastrophe and the {\it tritronqu\'ee} solution to the Painlev\'e-I equation , 2007, 0704.0501.

[26]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[27]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[28]  Alexander Tovbis,et al.  Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I , 2010, 1004.1828.

[29]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.