Multimessenger Constraints on Radiatively Decaying Axions from GW170817.

The metastable hypermassive neutron star produced in the coalescence of two neutron stars can copiously produce axions that radiatively decay into $\mathcal{O}(100)$~MeV photons. These photons can form a fireball with characteristic temperature smaller than $1\rm\, MeV$. By relying on X-ray observations of GW170817/GRB 170817A with CALET CGBM, Konus-Wind, and Insight-HXMT/HE, we present new bounds on the axion-photon coupling for axion masses in the range $1$-$400\,\rm MeV$. We exclude couplings down to $5\times 10^{-11}\,\rm GeV^{-1}$, complementing and surpassing existing constraints. Our approach can be extended to any feebly-interacting particle decaying into photons.

[1]  V. Brdar,et al.  Neutrino magnetic moment portal and supernovae: New constraints and multimessenger opportunities , 2023, Physical Review D.

[2]  S. Hoof,et al.  Updated constraints on axion-like particles from temporal information in supernova SN1987A gamma-ray data , 2022, Journal of Cosmology and Astroparticle Physics.

[3]  I. Tamborra,et al.  Resonant production of light sterile neutrinos in compact binary merger remnants , 2022, Physical Review D.

[4]  N. Rodd,et al.  Irreducible Axion Background. , 2022, Physical review letters.

[5]  G. Raffelt,et al.  Radiative transfer in stars by feebly interacting bosons , 2022, Journal of Cosmology and Astroparticle Physics.

[6]  H. Janka,et al.  Low-Energy Supernovae Severely Constrain Radiative Particle Decays. , 2022, Physical review letters.

[7]  R. Haas,et al.  A New Moment-Based General-Relativistic Neutrino-Radiation Transport Code: Methods and First Applications to Neutron Star Mergers , 2021, Monthly Notices of the Royal Astronomical Society.

[8]  G. Raffelt,et al.  Muonic Boson Limits: Supernova Redux , 2021, 2109.03244.

[9]  H. Janka,et al.  Dynamical ejecta of neutron star mergers with nucleonic weak processes I: Nucleosynthesis , 2021, 2109.02509.

[10]  M. Diamond,et al.  γ-Ray Flashes from Dark Photons in Neutron Star Mergers. , 2021, Physical review letters.

[11]  M. Sakellariadou,et al.  First Constraints on Nuclear Coupling of Axionlike Particles from the Binary Neutron Star Gravitational Wave Event GW170817. , 2021, Physical review letters.

[12]  K. Kotake,et al.  Axionlike Particles from Hypernovae. , 2021, Physical review letters.

[13]  T. Dietrich,et al.  Axisymmetric models for neutron star merger remnants with realistic thermal and rotational profiles , 2020, 2011.10557.

[14]  K. Schmidt-Hoberg,et al.  Updated BBN constraints on electromagnetic decays of MeV-scale particles , 2020, Journal of Cosmology and Astroparticle Physics.

[15]  Yue Zhang,et al.  Intimate Relationship between Sterile Neutrino Dark Matter and ΔN_{eff}. , 2020, Physical review letters.

[16]  T. Fischer,et al.  Heavy axion-like particles and core-collapse supernovae: constraints and impact on the explosion mechanism , 2020, Journal of Cosmology and Astroparticle Physics.

[17]  William H. Lee,et al.  The Fate of the Merger Remnant in GW170817 and Its Imprint on the Jet Structure , 2020, 2007.12245.

[18]  M. Shibata,et al.  Postmerger Mass Ejection of Low-mass Binary Neutron Stars , 2020, The Astrophysical Journal.

[19]  R. Leane,et al.  Supernova Muons: New Constraints on Z′ Bosons, Axions and ALPs , 2020, 2006.13942.

[20]  K. Sinha,et al.  Axions in neutron star mergers , 2020, Journal of Cosmology and Astroparticle Physics.

[21]  H. Arnold,et al.  Virgo , 2020, The Photographic Atlas of the Stars.

[22]  A. Buonanno,et al.  Gravitational-wave constraints on an effective-field-theory extension of general relativity , 2019, 1912.09917.

[23]  J. A. Dror,et al.  Probing muonic forces with neutron star binaries , 2019, 1909.12845.

[24]  E. Burns Neutron star mergers and how to study them , 2019, Living Reviews in Relativity.

[25]  T. Dietrich,et al.  Cooling binary neutron star remnants via nucleon-nucleon-axion bremsstrahlung , 2019, Physical Review D.

[26]  K. Hotokezaka,et al.  Merger and Mass Ejection of Neutron Star Binaries , 2019, Annual Review of Nuclear and Particle Science.

[27]  Meng-Ru Wu,et al.  New constraint from supernova explosions on light particles beyond the Standard Model , 2019, Physical Review D.

[28]  L. Rezzolla,et al.  When Did the Remnant of GW170817 Collapse to a Black Hole? , 2019, The Astrophysical Journal.

[29]  L. Roberts,et al.  Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts, and Nucleosynthesis , 2018, The Astrophysical Journal.

[30]  L. Roberts,et al.  Viscous-dynamical Ejecta from Binary Neutron Star Mergers , 2018, The Astrophysical Journal.

[31]  Heidelberg,et al.  Improved leakage-equilibration-absorption scheme (ileas) for neutrino physics in compact object mergers , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  M. Sakellariadou,et al.  Prospects for axion searches with Advanced LIGO through binary mergers , 2018, Physical Review D.

[33]  S. Bernuzzi,et al.  Long-lived remnants from binary neutron star mergers , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  Yu-Dai Tsai,et al.  Dipole portal to heavy neutral leptons , 2018, Physical Review D.

[35]  R. Essig,et al.  Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle , 2018, Journal of High Energy Physics.

[36]  B. Metzger,et al.  A Magnetar Origin for the Kilonova Ejecta in GW170817 , 2018, 1801.04286.

[37]  A. Nelson,et al.  Hidden-sector Spectroscopy with Gravitational Waves from Binary Neutron Stars , 2017, 1711.02096.

[38]  Yuichiro Sekiguchi,et al.  Modeling GW170817 based on numerical relativity and its implications , 2017, 1710.07579.

[39]  D. Guetta,et al.  Lessons from the Short GRB 170817A: The First Gravitational-wave Detection of a Binary Neutron Star Merger , 2017, 1710.06407.

[40]  P. Ferreira,et al.  Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A. , 2017, Physical review letters.

[41]  Tsvi Piran,et al.  A cocoon shock breakout as the origin of the γ-ray emission in GW170817 , 2017, Monthly Notices of the Royal Astronomical Society.

[42]  F. Collaboration Fermi-LAT observations of the LIGO/Virgo event GW170817 , 2017, 1710.05450.

[43]  B. Jain,et al.  Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.

[44]  J. Ezquiaga,et al.  Dark Energy After GW170817: Dead Ends and the Road Ahead. , 2017, Physical review letters.

[45]  F. Vernizzi,et al.  Dark Energy after GW170817 and GRB170817A. , 2017, Physical review letters.

[46]  S. Knapen,et al.  Light dark matter: Models and constraints , 2017, 1709.07882.

[47]  M. Sakellariadou,et al.  Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces , 2017, 1709.06634.

[48]  A. Hook,et al.  Probing axions with neutron star inspirals and other stellar processes , 2017, Journal of High Energy Physics.

[49]  J. Jaeckel,et al.  Decay photons from the axionlike particles burst of type II supernovae , 2017, Physical Review D.

[50]  C. Ott,et al.  How loud are neutron star mergers , 2015, 1512.06397.

[51]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[52]  Garching,et al.  SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS , 2013, 1302.6530.

[53]  K. Hotokezaka,et al.  Mass ejection from the merger of binary neutron stars , 2012, 1212.0905.

[54]  Javier Redondo,et al.  Cosmological bounds on pseudo Nambu-Goldstone bosons , 2011, 1110.2895.

[55]  M. Shibata,et al.  Gravitational waves and neutrino emission from the merger of binary neutron stars. , 2011, Physical review letters.

[56]  G. Fuller,et al.  Heavy sterile neutrinos and supernova explosions , 2008, 0806.4273.

[57]  M. Pospelov,et al.  Secluded WIMP Dark Matter , 2007, 0711.4866.

[58]  G. Raffelt Astrophysical axion bounds , 2006, hep-ph/0611350.

[59]  M. Shibata,et al.  Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing , 2006, astro-ph/0603145.

[60]  M. Shibata,et al.  Merger of binary neutron stars with realistic equations of state in full general relativity , 2005, gr-qc/0503119.

[61]  M. B. Davies,et al.  High-resolution calculations of merging neutron stars - I. Model description and hydrodynamic evolution , 2001, astro-ph/0110180.

[62]  G. Raffelt,et al.  Heavy sterile neutrinos: Bounds from big-bang nucleosynthesis and SN 1987A , 2000, hep-ph/0008138.

[63]  G. Raffelt,et al.  Search for solar Kaluza-Klein axions in theories of low-scale quantum gravity , 2000, hep-ph/0006327.

[64]  Z. Berezhiani,et al.  Gamma-ray bursts via emission of axion - like particles , 1999, hep-ph/9911333.

[65]  T. Piran Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[66]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[67]  G. Raffelt Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles , 1996 .

[68]  L. Oberauer,et al.  Supernova bounds on neutrino radiative decays , 1993 .

[69]  The VIRGO Collaboration , 2010 .