Second-harmonic emission in two-dimensional photonic crystals

A second-harmonic superprism effect in 2D photonic crystals is demonstrated numerically. A full control of the second-harmonic emission is achieved by tailoring the photonic dispersion curves. This effect is demonstrated by using a multiple scattering method generalized to the second-harmonic generation. We show that small angular variations or a wavelength tuning of the fundamental field induce large shifts of the second-harmonic emission (∼90°).

[1]  Ramon Vilaseca,et al.  Second harmonic generation in a photonic crystal , 1997 .

[2]  Ekmel Ozbay,et al.  Physics and applications of photonic crystals , 2004 .

[3]  Michael Scalora,et al.  Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures , 1997 .

[4]  Shanhui Fan,et al.  Channel Drop Tunneling through Localized States , 1998 .

[5]  Zhao-Qing Zhang,et al.  Multiple-scattering approach to finite-sized photonic band-gap materials , 1998 .

[6]  Masaya Notomi,et al.  Superprism Phenomena in Photonic Crystals , 1998 .

[7]  Jeff F. Young,et al.  Mode matching for second-harmonic generation in photonic crystal waveguides , 2002 .

[8]  Anne Talneau,et al.  Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm , 2002 .

[9]  H. A. Yousif,et al.  Scattering by two penetrable cylinders at oblique incidence. I - The analytical solution. II - Numerical examples , 1988 .

[10]  E. Centeno Second-harmonic superprism effect in photonic crystals. , 2005, Optics letters.

[11]  S. Denbaars,et al.  Large interband second-order susceptibilities in InxGa1−xN/GaN quantum wells , 1999 .

[12]  Zhao-qing Zhang,et al.  Multifrequency gap solitons in nonlinear photonic crystals. , 2003, Physical review letters.

[13]  V. Berger,et al.  Nonlinear Photonic Crystals , 1998 .

[14]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[15]  Didier Felbacq,et al.  Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity , 2000 .

[16]  D. Felbacq,et al.  Scattering by a random set of parallel cylinders , 1994 .

[17]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[18]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[19]  Dominique Coquillat,et al.  Giant second-harmonic generation in a one-dimensional GaN photonic crystal , 2004 .

[20]  Steven G. Johnson,et al.  Demonstration of highly efficient waveguiding in a photonic crystal slab at x=1.5{micro}m wavelengths , 2000 .

[21]  Ali Adibi,et al.  Optimization of superprism-based photonic crystal demultiplexers , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[22]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[23]  J Fedeli,et al.  Experimental evidence for superprism phenomena in SOI photonic crystals. , 2004, Optics express.

[24]  A two-dimensional nonlinear photonic crystal for strong second harmonic generation , 2002 .

[25]  C. Bowden,et al.  Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  D. Felbacq,et al.  Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  B. Mendoza,et al.  Second-harmonic generation in the scattering of light by an infinite cylinder , 2004 .

[28]  Adriana Passaseo,et al.  Resonant second-harmonic generation in a GaAs photonic crystal waveguide , 2003 .

[29]  M. Yamada,et al.  First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation , 1993 .

[30]  R. Corbalán,et al.  Second-harmonic generation in local modes of a truncated periodic structure. , 1995, Optics letters.

[31]  David Cassagne,et al.  Superprism effect in bidimensional rectangular photonic crystals , 2004 .

[32]  Toshihiko Baba,et al.  Wavelength demultiplexer consisting of Photonic crystal superprism and superlens. , 2005, Optics express.

[33]  I. Sagnes,et al.  Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length. , 2002, Physical review letters.

[34]  Susumu Noda,et al.  Three-dimensional photonic crystals operating at optical wavelength region , 2000 .

[35]  Masaya Notomi,et al.  Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering , 1999 .

[36]  J. Si,et al.  Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes , 2004 .

[37]  Fabrice Semond,et al.  Determination of the refractive indices of AlN, GaN, and AlxGa1−xN grown on (111)Si substrates , 2003 .

[38]  E. Centeno,et al.  Graded photonic crystals. , 2005, Optics letters.

[39]  Nai-Ben Ming,et al.  Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice , 1997 .

[40]  C. Bowden,et al.  Photonic band edge effects in finite structures and applications to chi 2 interactions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.