Stochastic blockmodel approximation of a graphon: Theory and consistent estimation

Non-parametric approaches for analyzing network data based on exchangeable graph models (ExGM) have recently gained interest. The key object that defines an ExGM is often referred to as a graphon. This non-parametric perspective on network modeling poses challenging questions on how to make inference on the graphon underlying observed network data. In this paper, we propose a computationally efficient procedure to estimate a graphon from a set of observed networks generated from it. This procedure is based on a stochastic blockmodel approximation (SBA) of the graphon. We show that, by approximating the graphon with a stochastic block model, the graphon can be consistently estimated, that is, the estimation error vanishes as the size of the graph approaches infinity.

[1]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[2]  Patrick J. Wolfe,et al.  Co-clustering separately exchangeable network data , 2012, ArXiv.

[3]  Daniel M. Roy,et al.  Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[5]  Zenglin Xu,et al.  Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis , 2011, ICML.

[6]  P. Diaconis,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[7]  S. Janson,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[8]  J. Daudin,et al.  Classification and estimation in the Stochastic Block Model based on the empirical degrees , 2011, 1110.6517.

[9]  M. M. Meyer,et al.  Statistical Analysis of Multiple Sociometric Relations. , 1985 .

[10]  Edoardo M. Airoldi,et al.  Stochastic blockmodels with growing number of classes , 2010, Biometrika.

[11]  Peter D. Hoff,et al.  Modeling homophily and stochastic equivalence in symmetric relational data , 2007, NIPS.

[12]  Zoubin Ghahramani,et al.  Random function priors for exchangeable arrays with applications to graphs and relational data , 2012, NIPS.

[13]  C. Priebe,et al.  Universally consistent vertex classification for latent positions graphs , 2012, 1212.1182.

[14]  László Lovász,et al.  Graph limits and parameter testing , 2006, STOC '06.

[15]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[16]  Bin Yu,et al.  Spectral clustering and the high-dimensional stochastic blockmodel , 2010, 1007.1684.

[17]  Edoardo M. Airoldi,et al.  Graphlet decomposition of a weighted network , 2012, AISTATS.

[18]  Larry Wasserman,et al.  All of Nonparametric Statistics (Springer Texts in Statistics) , 2006 .

[19]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.

[20]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[21]  Olav Kallenberg,et al.  On the representation theorem for exchangeable arrays , 1989 .

[22]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[23]  P. Bickel,et al.  The method of moments and degree distributions for network models , 2011, 1202.5101.

[24]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[25]  P. Wolfe,et al.  Nonparametric graphon estimation , 2013, 1309.5936.

[26]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[27]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data: Methods and Models , 2009 .

[28]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[29]  E. Levina,et al.  Community extraction for social networks , 2010, Proceedings of the National Academy of Sciences.

[30]  Edoardo M. Airoldi,et al.  A Survey of Statistical Network Models , 2009, Found. Trends Mach. Learn..

[31]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[32]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.