Language-Independent Discriminative Parsing of Temporal Expressions

Temporal resolution systems are traditionally tuned to a particular language, requiring significant human effort to translate them to new languages. We present a language independent semantic parser for learning the interpretation of temporal phrases given only a corpus of utterances and the times they reference. We make use of a latent parse that encodes a language-flexible representation of time, and extract rich features over both the parse and associated temporal semantics. The parameters of the model are learned using a weakly supervised bootstrapping approach, without the need for manually tuned parameters or any other language expertise. We achieve state-of-the-art accuracy on all languages in the TempEval2 temporal normalization task, reporting a 4% improvement in both English and Spanish accuracy, and to our knowledge the first results for four other languages.

[1]  Inderjeet Mani,et al.  Robust Temporal Processing of News , 2000, ACL.

[2]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[3]  E. Bach,et al.  An extension of classical transformational gram-mar , 1976 .

[4]  Ming-Wei Chang,et al.  Driving Semantic Parsing from the World’s Response , 2010, CoNLL.

[5]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[6]  Kevin Knight,et al.  A Syntax-based Statistical Translation Model , 2001, ACL.

[7]  James F. Allen,et al.  TRIPS and TRIOS System for TempEval-2: Extracting Temporal Information from Text , 2010, *SEMEVAL.

[8]  Rafael Muñoz,et al.  TERSEO: Temporal Expression Resolution System Applied to Event Ordering , 2003, TSD.

[9]  Daniel Jurafsky,et al.  Parsing Time: Learning to Interpret Time Expressions , 2012, NAACL.

[10]  Michael Gertz,et al.  HeidelTime: High Quality Rule-Based Extraction and Normalization of Temporal Expressions , 2010, *SEMEVAL.

[11]  Rohit J. Kate,et al.  Learning to Transform Natural to Formal Languages , 2005, AAAI.

[12]  Luke S. Zettlemoyer,et al.  Online Learning of Relaxed CCG Grammars for Parsing to Logical Form , 2007, EMNLP.

[13]  Dan Klein,et al.  Learning Dependency-Based Compositional Semantics , 2011, CL.

[14]  Beatrice Alex,et al.  Edinburgh-LTG: TempEval-2 System Description , 2010, *SEMEVAL.

[15]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[16]  David Chiang,et al.  Hierarchical Phrase-Based Translation , 2007, CL.

[17]  Anna Maria Di Sciullo,et al.  Natural Language Understanding , 2009, SoMeT.

[18]  Estela Saquete Boró,et al.  TIPSem (English and Spanish): Evaluating CRFs and Semantic Roles in TempEval-2 , 2010, *SEMEVAL.

[19]  Tommaso Caselli,et al.  SemEval-2010 Task 13: TempEval-2 , 2010, *SEMEVAL.

[20]  Marie-Francine Moens,et al.  KUL: Recognition and Normalization of Temporal Expressions , 2010, SemEval@ACL.

[21]  Hans Reichenbach,et al.  Elements of symbolic logic , 1948 .

[22]  Paloma Martínez,et al.  UC3M System: Determining the Extent, Type and Value of Time Expressions in TempEval-2 , 2010, SemEval@ACL.

[23]  Georgiana Puscasu A Framework for Temporal Resolution , 2004, LREC.

[24]  Angel X. Chang,et al.  SUTime: A library for recognizing and normalizing time expressions , 2012, LREC.

[25]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.