Direct observation of vortex shells and magic numbers in mesoscopic superconducting disks.

We have studied vortex configurations in mesoscopic superconducting disks using the Bitter decoration technique. For a broad range of vorticities L the circular geometry is found to lead to the formation of concentric shells of vortices. From images obtained on disks of different sizes in a range of magnetic fields we traced the evolution of vortex states and identified stable and metastable configurations of interacting vortices. Furthermore, the analysis of shell filling with increasing L allowed us to identify magic numbers corresponding to the appearance of consecutive new shells.

[1]  A. Kanda,et al.  Experimental evidence for giant vortex states in a mesoscopic superconducting disk. , 2004, Physical review letters.

[2]  F. Peeters,et al.  From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks , 2004, cond-mat/0407159.

[3]  S. Okayasu,et al.  Penetration of vortices into micro-superconductors observed with a scanning SQUID microscope , 2004 .

[4]  F. Peeters,et al.  Vortex shells in mesoscopic superconducting disks , 2004 .

[5]  F. Peeters,et al.  Dependence of the vortex configuration on the geometry of mesoscopic flat samples , 2001, cond-mat/0106601.

[6]  Anatoly Svidzinsky,et al.  Vortices in a trapped dilute Bose-Einstein condensate , 2001, cond-mat/0102003.

[7]  Victor V. Moshchalkov,et al.  Symmetry-induced formation of antivortices in mesoscopic superconductors , 2000, Nature.

[8]  A. Geim,et al.  Non-quantized penetration of magnetic field in the vortex state of superconductors , 2000, Nature.

[9]  F. Peeters,et al.  Field-cooled vortex states in mesoscopic superconducting samples , 2000 .

[10]  Palacios,et al.  Fine structure in magnetization of individual fluxoid states , 2000, Physical review letters.

[11]  F. Peeters,et al.  Transitions between different superconducting states in mesoscopic disks , 1999, cond-mat/9910110.

[12]  A. Geim,et al.  Paramagnetic Meissner effect in small superconductors , 1998, Nature.

[13]  J. Palacios Vortex matter in superconducting mesoscopic disks: Structure, magnetization, and phase transitions , 1998, cond-mat/9806056.

[14]  F. Peeters,et al.  Phase transitions in thin mesoscopic superconducting disks , 1998 .

[15]  F. Peeters,et al.  Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998, cond-mat/9806013.

[16]  A. Geim,et al.  Phase transitions in individual sub-micrometre superconductors , 1997, Nature.

[17]  V. Moshchalkov,et al.  PARAMAGNETIC MEISSNER EFFECT FROM THE SELF-CONSISTENT SOLUTION OF THE GINZBURG-LANDAU EQUATIONS , 1997 .

[18]  Ovchinnikov,et al.  Nucleation of vortices inside open and blind microholes. , 1996, Physical review. B, Condensed matter.

[19]  J. Brison,et al.  VORTEX STRUCTURES IN SMALL SUPERCONDUCTING DISKS , 1994 .

[20]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[21]  I. Grigorieva Magnetic flux decoration of type-II superconductors , 1994 .

[22]  Peeters,et al.  Ordering and phase transitions of charged particles in a classical finite two-dimensional system. , 1994, Physical review. B, Condensed matter.

[23]  Brian B. Schwartz,et al.  Superconductor materials science : metallurgy, fabrication, and applications , 1981 .

[24]  L. J. Campbell,et al.  Vortex patterns and energies in a rotating superfluid , 1979 .

[25]  J. Cuomo,et al.  ELECTRICAL CHARACTERISTICS OF rf-SPUTTERED SINGLE-CRYSTAL NIOBIUM FILMS. , 1972 .

[26]  H. Fink,et al.  MAGNETIC IRREVERSIBLE SOLUTION OF THE GINZBURG--LANDAU EQUATIONS. , 1966 .