Optimality and Duality in Nondifferentiable and Multiobjective Programming under Generalized d-Invexity

In this paper, we are concerned with the nondifferentiable multiobjective programming problem with inequality constraints. We introduce four new classes of generalized d-type-I functions. By utilizing the new concepts, Antczak type Karush-Kuhn-Tucker sufficient optimality conditions, Mond-Weir type and general Mond-Weir type duality results are obtained for non-differentiable and multiobjective programming.

[1]  Shashi Kant Mishra,et al.  Generalized convex composite multi-objective nonsmooth programming and conditional proper efficiency , 1995 .

[2]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[3]  R. N. Mukherjee,et al.  On generalised convex multi-objective nonsmooth programming , 1996, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[4]  Norma G. Rueda,et al.  Optimality and duality with generalized convexity , 1995 .

[5]  Vaithilingam Jeyakumar,et al.  On generalised convex mathematical programming , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[6]  M. A. Hanson,et al.  Necessary and sufficient conditions in constrained optimization , 1987, Math. Program..

[7]  S. K. Mishra On Sufficiency and Duration in Nonsmooth Multiobjective Programming , 1997 .

[8]  B. Mond,et al.  Pre-invex functions in multiple objective optimization , 1988 .

[9]  Y. Ye,et al.  D-Invexity and optimality conditions , 1991 .

[10]  Shashi Kant Mishra On Multiple-Objective Optimization with Generalized Univexity , 1998 .

[11]  B. D. Craven,et al.  Nondifferentiable optimization by smooth approximations , 1986 .

[12]  S. Suneja,et al.  Optimality and Duality in Nondifferentiable Multiobjective Optimization Involvingd-Type I and Related Functions , 1997 .

[13]  Tadeusz Antczak Multiobjective programming under d-invexity , 2002, Eur. J. Oper. Res..

[14]  Shashi Kant Mishra,et al.  Optimality and Duality with Generalized Semi — Univexity , 2000 .

[15]  R. Kaul,et al.  Optimality criteria and duality in multiple-objective optimization involving generalized invexity , 1994 .

[16]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[17]  M. A. Hanson,et al.  Multiobjective duality with invexity , 1987 .

[18]  M. A. Hanson,et al.  Optimality criteria in mathematical programming involving generalized invexity , 1988 .

[19]  Brahim Aghezzaf,et al.  Generalized Invexity and Duality in Multiobjective Programming Problems , 2000, J. Glob. Optim..

[20]  B. Craven Invex functions and constrained local minima , 1981, Bulletin of the Australian Mathematical Society.

[21]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[22]  Shashi Kant Mishra,et al.  Lagrange multipliers saddle points and scalarizations in composite multiobjective nonsmooth programming , 1996 .