TOMBO: All-electron mixed-basis approach to condensed matter physics

Abstract TOMBO is a computer code for calculating the electronic structure of systems that consist both of core and valence electrons and nuclei, based on density-functional theory. It is based on an all-electron mixed-basis approach, in which the Kohn–Sham (KS) wave function is expressed by a linear combination of plane-waves and atomic-orbitals. This approach can describe both spatially localized and extended orbitals, which enables us to perform all-electron calculations with high accuracy from isolated clusters to periodic crystals. The present paper describes a theory of the all-electron mixed-basis approach, as well as input variables and benchmark tests in TOMBO . The algorithm for accelerating the computational time that is needed to solve the KS equation is also presented.

[1]  Vijay Kumar,et al.  Breakdown of time-reversal symmetry of photoemission and its inverse in small silicon clusters , 2003 .

[2]  Y. Kawazoe,et al.  All-electron mixed-basis calculation to optimize structures of vanadium clusters , 2001 .

[3]  Y. Kawazoe,et al.  All-Electron Mixed-Basis Calculation of Structurally Optimized Titanium Nitride Clusters ∗ , 2002 .

[4]  F. Lechermann,et al.  Realistic modeling of the electronic structure and the effect of correlations for Sn/Si(111) and Sn/Ge(111) surfaces , 2010, 1003.3224.

[5]  K. Ho,et al.  Microscopic analysis of interatomic forces in transition metals with lattice distortions , 1983 .

[6]  Steven G. Louie,et al.  Self-consistent mixed-basis approach to the electronic structure of solids , 1979 .

[7]  Needels,et al.  Symmetry breaking in the molecular-dynamics method for ab initio total-energy calculations. , 1988, Physical Review B (Condensed Matter).

[8]  K. Bohnen,et al.  Mass enhancement parameter in free-standing ultrathin Pb(111) films: The effect of spin-orbit coupling , 2013 .

[9]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[10]  S. Louie,et al.  Magnetic susceptibility of semiconductors by an all-electron first-principles approach , 1997 .

[11]  S. Louie,et al.  Ab initio GW quasiparticle calculation of small alkali-metal clusters , 2002 .

[12]  K. Ohno,et al.  Significant reduction of on-site Coulomb energy U due to short-range correlation in an organic Mott insulator. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  K. Ohno,et al.  Quasiparticle energy spectra of alkali-metal clusters: all-electron first-principles calculations. , 2008, The Journal of chemical physics.

[14]  William H. Press,et al.  Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.

[15]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[16]  Cluster size dependence of double ionization energy spectra of spin-polarized aluminum and sodium clusters: All-electron spin-polarizedGW+T-matrix method , 2010 .

[17]  Optical properties of alkali-earth atoms and Na2 calculated by GW and Bethe–Salpeter equations , 2004 .

[18]  K. Ohno,et al.  Dynamics simulation of a π-conjugated light-harvesting dendrimer II: phenylene-based dendrimer (phDG2) , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Allan,et al.  Solution of Schrödinger's equation for large systems. , 1989, Physical review. B, Condensed matter.

[20]  J. Ziman Principles of the Theory of Solids , 1965 .

[21]  K. Ohno,et al.  Two-electron distribution functions and short-range electron correlations of atoms and molecules by first principles T-matrix calculations. , 2006, The Journal of chemical physics.

[22]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[23]  K. Ohno,et al.  Dynamics simulation of a π-conjugated light-harvesting dendrimer , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  K. Ho,et al.  First-principles pseudopotential calculations for hydrogen in 4d transition metals. I. Mixed-basis method for total energies and forces , 1992 .

[25]  K. Schwarz,et al.  Solid state calculations using WIEN2k , 2003 .

[26]  Y. Kawazoe,et al.  Computational Materials Science: From Ab Initio to Monte Carlo Methods , 2000 .

[27]  Singh,et al.  Simultaneous solution of diagonalization and self-consistency problems for transition-metal systems. , 1989, Physical review. B, Condensed matter.

[28]  Y. Kawazoe,et al.  Absolute total energy of small copper clusters in an all-electron mixed-basis approach with the generalized-gradient approximation , 1999 .

[29]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[30]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[31]  K. Ohno,et al.  A GW+Bethe-Salpeter calculation on photoabsorption spectra of (CdSe)3 and (CdSe)6 clusters. , 2012, The Journal of chemical physics.

[32]  Akitaka Sawamura,et al.  Acceleration of Self-Consistent Electronic-Structure Calculations: Storage-Saving and Multiple-Secant Implementation of the Broyden Method , 1999 .

[33]  K. Ohno,et al.  Time-dependent density functional approach to chemical reactions induced by electronic double excitations , 2005 .

[34]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[35]  K. Bohnen,et al.  Lattice dynamics of bismuth tellurohalides , 2012 .

[36]  K. Ohno,et al.  All-electron first-principles GW+Bethe-Salpeter calculation for optical absorption spectra of sodium clusters , 2010 .

[37]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[38]  S. Louie,et al.  Ab initio GW quasiparticle energies of small sodium clusters by an all-electron mixed-basis approach , 2001 .

[39]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  Y. Kawazoe,et al.  Simulation of a chemical reaction, 2LiH→Li2+H2, driven by doubly excitation , 2004 .

[41]  H. Mizuseki,et al.  Effect of a nickel dimer on the dissociation dynamics of a hydrogen molecule , 2013 .

[42]  K. Ohno,et al.  First principles T-matrix calculations for Auger spectra of hydrocarbon systems , 2008 .

[43]  Y. Kawazoe,et al.  First-principles calculations of hyperfine parameters with the all-electron mixed-basis method , 2006 .

[44]  K. Ohno,et al.  All-Electron GW Calculations of Silicon, Diamond, and Silicon Carbide , 2010 .

[45]  Y. Kawazoe,et al.  Double ionization energy spectra of small alkali-metal clusters , 2004 .

[46]  Y. Kawazoe,et al.  Insertion of Xe and Kr Atoms into C 60 and C 70 Fullerenes and the Formation of Dimers , 1998 .

[47]  First Principles Calculations of Optical Absorption Spectra of Atoms in the Vacuum and Crystals , 2006 .

[48]  Walter A. Harrison,et al.  Solid state theory , 1970 .

[49]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[50]  K. Ohno,et al.  Instability of Dianions of Alkali-Metal Clusters , 2005 .

[51]  K. Ohno,et al.  Charge separation dynamics at molecular heterojunction of C60 and zinc phthalocyanine , 2010 .

[52]  K. Ohno,et al.  First-principles GW calculations of GaAs clusters and crystal using an all-electron mixed basis approach , 2007 .

[53]  Y. Kawazoe,et al.  All-electron mixed-basis calculation with conjugated gradient method to optimize structure of copper clusters , 1999 .

[54]  Giovanni Onida,et al.  Quasiparticle electronic structure of copper in the GW approximation. , 2002, Physical review letters.

[55]  K. Ohno,et al.  Light-harvesting function through one-by-one electron and hole transfer in a methane-lithium system. , 2006, The Journal of chemical physics.

[56]  H. Akiyama,et al.  First-principles investigation on Rydberg and resonance excitations: A case study of the firefly luciferin anion. , 2014, The Journal of chemical physics.

[57]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[58]  Y. Kawazoe,et al.  Ab Initio study of dopant insertion into carbon nanotubes , 1999 .

[59]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[60]  A. D. McLean,et al.  Accurate calculation of the attractive interaction of two ground state helium atoms , 1973 .

[61]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[62]  K. Ohno,et al.  First-principles T-matrix calculations of double-ionization energy spectra of atoms and molecules. , 2005, The Journal of chemical physics.

[63]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .