A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations

In this paper we continue the study, which was initiated in (Ben-Artzi et al. in Math. Model. Numer. Anal. 35(2):313–303, 2001; Fishelov et al. in Lecture Notes in Computer Science, vol. 2667, pp. 809–817, 2003; Ben-Artzi et al. in J. Comput. Phys. 205(2):640–664, 2005 and SIAM J. Numer. Anal. 44(5):1997–2024, 2006) of the numerical resolution of the pure streamfunction formulation of the time-dependent two-dimensional Navier-Stokes equation. Here we focus on enhancing our second-order scheme, introduced in the last three afore-mentioned articles, to fourth order accuracy. We construct fourth order approximations for the Laplacian, the biharmonic and the nonlinear convective operators. The scheme is compact (nine-point stencil) for the Laplacian and the biharmonic operators, which are both treated implicitly in the time-stepping scheme. The approximation of the convective term is compact in the no-leak boundary conditions case and is nearly compact (thirteen points stencil) in the case of general boundary conditions. However, we stress that in any case no unphysical boundary condition was applied to our scheme. Numerical results demonstrate that the fourth order accuracy is actually obtained for several test-cases.

[1]  Murli M. Gupta,et al.  A single cell high order scheme for the convection‐diffusion equation with variable coefficients , 1984 .

[2]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[3]  Ling Yuan,et al.  Discontinuous Galerkin method based on non-polynomial approximation spaces , 2006, J. Comput. Phys..

[4]  Alexandre J. Chorin VORTEX MODELS AND BOUNDARY LAYER INSTABILITY , 1989 .

[5]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[6]  Dalia Fishelov,et al.  Vorticity dynamics and numerical Resolution of Navier-Stokes Equations , 2001 .

[7]  Jean-Pierre Croisille,et al.  A Fast Direct Solver for the Biharmonic Problem in a Rectangular Grid , 2008, SIAM J. Sci. Comput..

[8]  Alexandre J. Chorin Vortex Sheet Approximation of Boundary Layers , 1989 .

[9]  Thomas Y. Hou,et al.  STABLE FOURTH-ORDER STREAM-FUNCTION METHODS FOR INCOMPRESSIBLE FLOWS WITH BOUNDARIES * , 2009 .

[10]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[11]  Nicola Parolini,et al.  Numerical investigation on the stability of singular driven cavity flow , 2002 .

[12]  Tao Tang,et al.  A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows , 2001, J. Sci. Comput..

[13]  R. Moser,et al.  Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions , 1991 .

[14]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[15]  L. Quartapelle,et al.  Projection conditions on the vorticity in viscous incompressible flows , 1981 .

[16]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[17]  M. Ben-Artzi,et al.  A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .

[18]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[19]  John W. Goodrich,et al.  An unsteady time asymptotic flow in the square driven cavity , 1990 .

[20]  Irfan Altas,et al.  Multigrid Solution of Automatically Generated High-Order Discretizations for the Biharmonic Equation , 1998, SIAM J. Sci. Comput..

[21]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[22]  H. B. Keller,et al.  Driven cavity flows by efficient numerical techniques , 1983 .

[23]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[24]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[25]  M. Kobayashi,et al.  A computational stream function method for two‐dimensional incompressible viscous flows , 2005 .

[26]  Jean-Pierre Croisille,et al.  A Compact Scheme for the Streamfunction Formulation of Navier-Stokes Equations , 2003, ICCSA.

[27]  P. Gresho Incompressible Fluid Dynamics: Some Fundamental Formulation Issues , 1991 .

[28]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[29]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[30]  Jian‐Guo Liu,et al.  Vorticity Boundary Condition and Related Issues for Finite Difference Schemes , 1996 .

[31]  R. Nicolaides,et al.  Finite element technique for optimal pressure recovery from stream function formulation of viscous flows , 1986 .

[32]  Karl Gustafson,et al.  Cavity flow dynamics at higher reynolds number and higher aspect ratio , 1987 .

[33]  G. Carey,et al.  High‐order compact scheme for the steady stream‐function vorticity equations , 1995 .

[34]  Per Lötstedt,et al.  High order accurate solution of the incompressible Navier-Stokes equations , 2005 .

[35]  Karl Gustafson,et al.  Hopf bifurcation in the driven cavity , 1990 .

[36]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[37]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[38]  W. Y. Soh,et al.  Time-Dependent viscous incompressible Navier-Stokes equations: the finite difference Galerkin formulation and streamfunction algorithms , 1989 .

[39]  Raz Kupferman,et al.  A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..

[40]  Roland Glowinski,et al.  Iterative solution of the stream function-vorticity formulation of the stokes problem, applications to the numerical simulation of incompressible viscous flow , 1991 .

[41]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[42]  George Em Karniadakis,et al.  A discontinuous Galerkin method for the Navier-Stokes equations , 1999 .

[43]  Murli M. Gupta,et al.  A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation , 2005 .

[44]  J. W. Stephenson Single cell discretizations of order two and four for biharmonic problems , 1984 .

[45]  N. Moraga,et al.  A stream function implicit finite difference scheme for 2D incompressible flows of Newtonian fluids , 2002 .

[46]  Graham F. Carey,et al.  Extension of high‐order compact schemes to time‐dependent problems , 2001 .

[47]  D. Gottlieb,et al.  The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes , 1993 .

[48]  Marek Behr,et al.  Solution techniques for the vorticity–streamfunction formulation of two‐dimensional unsteady incompressible flows , 1990 .

[49]  Jean-Pierre Croisille,et al.  Convergence of a Compact Scheme for the Pure Streamfunction Formulation of the Unsteady Navier-Stokes System , 2006, SIAM J. Numer. Anal..

[50]  Jean-Pierre Croisille,et al.  A Compact Difference Scheme for the Biharmonic Equation in Planar Irregular Domains , 2009, SIAM J. Numer. Anal..

[51]  Alexandre Joel VORTEX MODELS AND BOUNDARY LAYER INSTABILITY , 1980 .

[52]  E Weinan,et al.  Essentially Compact Schemes for Unsteady Viscous Incompressible Flows , 1996 .

[53]  M Israeli,et al.  Numerical Simulation of Viscous Incompressible Flows , 1974 .

[54]  Z. Kosma Computing laminar incompressible flows over a backward-facing step using newton iterations , 2000 .

[55]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .