A practical approach to wave energy modeling and control

Abstract The potential for control design to dramatically improve the economic viability of wave energy has generated a great deal of interest and excitement. However, for a number of reasons, the promised benefits from better control designs have yet to be widely realized by wave energy devices and wave energy remains a relatively nascent technology. This brief paper summarizes a simple, yet powerful approach to wave energy dynamics modeling, and subsequent control design based on impedance matching. Our approach leverages the same concepts that are exploited by a simple FM radio to achieve a feedback controller for wave energy devices that approaches optimal power absorption. If fully utilized, this approach can deliver immediate and consequential reductions to the cost of wave energy. Additionally, this approach provides the necessary framework for control co-design of a wave energy converter, in which an understanding of the control logic allows for synchronous design of the device control system and hardware.

[1]  Florian Steinke,et al.  Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where? , 2012 .

[2]  Torgeir Moan,et al.  A Comparison of Selected Strategies for Adaptive Control of Wave Energy Converters , 2011 .

[3]  Nicolás Faedo,et al.  An Energy-Maximising Linear Time Invariant Controller (LiTe-Con) for Wave Energy Devices , 2020, IEEE Transactions on Sustainable Energy.

[4]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[5]  E. R. Jefferys Simulation of wave power devices , 1984 .

[6]  Kester Gunn,et al.  Quantifying the global wave power resource , 2012 .

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  Mirko Previsic,et al.  METHODOLOGY FOR DESIGN AND ECONOMIC ANALYSIS OF MARINE ENERGY CONVERSION (MEC) TECHNOLOGIES. , 2014 .

[9]  Nasrudin Abd Rahim,et al.  Role of smart grid in renewable energy: An overview , 2016 .

[10]  A. Cornett A GLOBAL WAVE ENERGY RESOURCE ASSESSMENT , 2008 .

[11]  Tristan Perez,et al.  A Matlab toolbox for parametric identification of radiation-force models of ships and offshore structures , 2009 .

[12]  Julien De Rouck,et al.  A methodology for production and cost assessment of a farm of wave energy converters , 2011 .

[13]  D. S. Jenne,et al.  Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint , 2015 .

[14]  S. Spencer,et al.  A Self-Tuning WEC Controller For Changing Sea States , 2022, IFAC-PapersOnLine.

[15]  Ron J. Patton,et al.  Learning a Predictionless Resonating Controller for Wave Energy Converters , 2019 .

[16]  J. Falnes Ocean Waves and Oscillating Systems , 2002 .

[17]  Ryan G. Coe,et al.  Comments on Control of Wave Energy Converters , 2021, IEEE Transactions on Control Systems Technology.

[18]  Johannes Falnes,et al.  Optimum Control of Oscillation of Wave-Energy Converters , 2002 .

[19]  Ryan G. Coe,et al.  Model Predictive Control Tuning by Inverse Matching for a Wave Energy Converter , 2019, Energies.

[20]  I. Losada,et al.  A global wave power resource and its seasonal, interannual and long-term variability , 2015 .

[21]  W. Sasaki Predictability of global offshore wind and wave power , 2017 .

[22]  Umesh A. Korde,et al.  A comparison of control strategies for wave energy converters , 2017 .

[23]  Aurélien Babarit,et al.  SEAREV: case study of the development of a wave energy converter , 2015 .

[24]  A. Babarit,et al.  Theoretical and numerical aspects of the open source BEM solver NEMOH , 2015 .

[25]  S H Salter,et al.  Power conversion mechanisms for wave energy , 2002 .

[26]  António F.O. Falcão,et al.  Wave energy utilization: A review of the technologies , 2010 .

[27]  David G. Wilson,et al.  Feedback Resonating Control for a Wave Energy Converter , 2018, 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM).

[28]  K. Cheung,et al.  Atlas of global wave energy from 10 years of reanalysis and hindcast data , 2012 .

[29]  D. Evans A theory for wave-power absorption by oscillating bodies , 1976, Journal of Fluid Mechanics.

[30]  A. R. Wallace,et al.  On the capture width of wave energy converters , 2009 .

[31]  Guang Li,et al.  Wave energy converter control by wave prediction and dynamic programming , 2012 .

[32]  M. N. Sahinkaya,et al.  A review of wave energy converter technology , 2009 .

[33]  Florian Steinke,et al.  Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions , 2012 .

[34]  Bradley J. Buckham,et al.  On establishing generalized analytical phase control conditions in two body self-reacting point absorber wave energy converters , 2020 .

[35]  J. Falnes,et al.  A resonant point absorber of ocean-wave power , 1975, Nature.

[36]  Naser Mostaghel,et al.  REPRESENTATIONS OF COULOMB FRICTION FOR DYNAMIC ANALYSIS , 1997 .

[37]  S. Dasgupta,et al.  The impact of sea level rise on developing countries: a comparative analysis , 2007 .

[38]  John Ringwood,et al.  Mathematical modelling of wave energy converters: A review of nonlinear approaches , 2017 .

[39]  Duarte Valério,et al.  Optimisation of wave energy extraction with the Archimedes Wave Swing , 2007 .

[40]  David G. Wilson,et al.  Optimal control of wave energy converters , 2017 .

[41]  D. Pozar Microwave Engineering , 1990 .

[42]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[43]  Daewoong Son,et al.  Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control , 2017 .

[44]  David G. Wilson,et al.  System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling , 2017 .

[45]  A. Clément,et al.  Wave energy in Europe: current status and perspectives , 2002 .

[46]  Gordon Lightbody,et al.  Maximisation of Energy Capture by a Wave-Energy Point Absorber using Model Predictive Control , 2011 .

[47]  Daniel L. Laird,et al.  Technological Cost-Reduction Pathways for Point Absorber Wave Energy Converters in the Marine Hydrokinetic Environment. , 2013 .

[48]  Umesh A. Korde,et al.  Hydrodynamic Control of Wave Energy Devices , 2016 .

[49]  Bradley A. Ling Real-Time Estimation and Prediction of Wave Excitation Forces for Wave Energy Control Applications , 2015 .

[50]  Michael J. Lawson,et al.  Implementing Nonlinear Buoyancy and Excitation Forces in the WEC-Sim Wave Energy Converter Modeling Tool , 2014 .

[51]  Johannes Falnes,et al.  On non-causal impulse response functions related to propagating water waves , 1995 .

[52]  Walter Munk,et al.  Origin and Generation of Waves , 2010 .

[53]  Hoai-Nam Nguyen,et al.  Continuously Adaptive PI Control of Wave Energy Converters under Irregular Sea-State Conditions , 2017 .

[54]  Jesse D. Roberts,et al.  A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects , 2018, Renewable Energy.

[55]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[56]  P. Jacobson Mapping and Assessment of the United States Ocean Wave Energy Resource , 2011 .