Robustesse en programmation linéaire

Dans cette these nous nous interessons a la prise en compte d’incertitudes affectant les coefficients de programmes lineaires. Plus precisement, nous traitons les problemes admettant un second membre des contraintes incertain. Notre etude vise a repondre a la preoccupation de robustesse pour ces problemes et cela suivant leur contexte decisionnel. Nous considerons trois contextes de decision : le premier concerne la prise de decision en presence d’incertitudes, le deuxieme traite de l’evaluation des couts en fonction des aleas et cela dans une phase de planification et le troisieme comporte des problematiques multi-etapes, ou la decision robuste doit prendre en compte le caractere dynamique de ces problemes. Pour chacun de ses contextes nous presentons la formulation mathematique des problemes engendres, leur complexite et une approche de resolution. Nous nous interessons egalement a deux applications reelles : le probleme de localisation et de transport robuste comportant des demandes incertaines que nous traitons dans un contexte bi-etapes et, un probleme de gestion de stock admettant une demande incertaine aborde selon les trois contextes decisionnels precedents.

[1]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[2]  Hande Yaman,et al.  The Robust Shortest Path Problem with Interval Data , 2012 .

[3]  Igor Averbakh Minmax regret solutions for minimax optimization problems with uncertainty , 2000, Oper. Res. Lett..

[4]  Rim Kalai-Jemai,et al.  Une nouvelle approche de robustesse : application à quelques problèmes d'optimisation , 2006 .

[5]  Alper Atamtürk,et al.  Two-Stage Robust Network Flow and Design Under Demand Uncertainty , 2007, Oper. Res..

[6]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..

[7]  Giorgio Gallo,et al.  Bilinear programming: An exact algorithm , 1977, Math. Program..

[8]  Milan Hladík Optimal value range in interval linear programming , 2009, Fuzzy Optim. Decis. Mak..

[9]  D. Bertsimas,et al.  Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty , 2006 .

[10]  Pawel Zielinski,et al.  The computational complexity of the relative robust shortest path problem with interval data , 2004, Eur. J. Oper. Res..

[11]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[12]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[13]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[14]  Virginie Gabrel,et al.  Robustness and duality in linear programming , 2010, J. Oper. Res. Soc..

[15]  Igor Averbakh,et al.  On the complexity of minmax regret linear programming , 2005, Eur. J. Oper. Res..

[16]  Arkadi Nemirovski,et al.  Robust Modeling of Multi-Stage Portfolio Problems , 2000 .

[17]  Cécile Murat,et al.  Robust Shortest Path Problems , 2010 .

[18]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[19]  Gilbert Laporte,et al.  Robust Inventory Routing Under Demand Uncertainty , 2012, Transp. Sci..

[20]  Michel Minoux Robust Linear Programming with Right-Hand-Side Uncertainty, Duality and Applications , 2009, Encyclopedia of Optimization.

[21]  Gang Yu,et al.  On the Max-Min 0-1 Knapsack Problem with Robust Optimization Applications , 1996, Oper. Res..

[22]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[23]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[24]  C. Singh Convex programming with set-inclusive constraints and its applications to generalized linear and fractional programming , 1982 .

[25]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[26]  Takeo Yamada,et al.  Heuristic and exact algorithms for the max-min optimization of the multi-scenario knapsack problem , 2008, Comput. Oper. Res..

[27]  Eligius M. T. Hendrix,et al.  Generalized bilinear programming: An application in farm management , 1996 .

[28]  A. L. Soyster,et al.  Inexact linear programming with generalized resource sets , 1979 .

[29]  M. Laguna,et al.  A New Mixed Integer Formulation for the Maximum Regret Problem , 1998 .

[30]  James E. Falk,et al.  A linear max—min problem , 1973, Math. Program..

[31]  Tony Hindle,et al.  Rational Analysis for a Problematic World , 1990 .

[32]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust spanning tree problem with interval data , 2002, Eur. J. Oper. Res..

[33]  Cécile Murat,et al.  Linear Programming with interval right handsides June 29 , 2007 , 2007 .

[34]  I-Hsuan Hong,et al.  Scenario relaxation algorithm for finite scenario-based min-max regret and min-max relative regret robust optimization , 2008, Comput. Oper. Res..

[35]  Amir Beck,et al.  Duality in robust optimization: Primal worst equals dual best , 2009, Oper. Res. Lett..

[36]  Cécile Murat,et al.  Recourse problem of the 2-stage robust location transportation problem , 2010, Electron. Notes Discret. Math..

[37]  Olivier Spanjaard,et al.  Some tractable instances of interval data minmax regret problems , 2008, Oper. Res. Lett..

[38]  Manuel Laguna,et al.  A heuristic to minimax absolute regret for linear programs with interval objective function coefficients , 1999, Eur. J. Oper. Res..

[39]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[40]  Christophe Meyer,et al.  A Simple Finite Cone Covering Algorithm for Concave Minimization , 2000, J. Glob. Optim..

[41]  J. Rosenhead,et al.  Robustness and Optimality as Criteria for Strategic Decisions , 1972 .

[42]  Pascal Van Hentenryck,et al.  On the complexity of the robust spanning tree problem with interval data , 2004, Oper. Res. Lett..

[43]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[44]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust shortest path problem with interval data , 2004, Oper. Res. Lett..

[45]  Genaro J. Gutierrez,et al.  Algorithms for robust single and multiple period layout planning for manufacturing systems , 1992 .

[46]  Roberto Montemanni,et al.  A Benders decomposition approach for the robust spanning tree problem with interval data , 2006, Eur. J. Oper. Res..

[47]  Igor Averbakh Minmax regret linear resource allocation problems , 2004, Oper. Res. Lett..

[48]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[49]  Elana Guslitser UNCERTAINTY- IMMUNIZED SOLUTIONS IN LINEAR PROGRAMMING , 2002 .

[50]  Michel Minoux,et al.  On robust maximum flow with polyhedral uncertainty sets , 2009, Optim. Lett..

[51]  Hau L. Lee,et al.  A ROBUSTNESS APPROACH TO FACILITIES DESIGN , 1987 .

[52]  J. Rosenhead,et al.  Robustness in Sequential Investment Decisions , 1968 .

[53]  L. J. Savage,et al.  The Foundation of Statistics , 1956 .

[54]  Roberto Montemanni,et al.  An exact algorithm for the robust shortest path problem with interval data , 2004, Comput. Oper. Res..

[55]  Adam Kasperski,et al.  The robust shortest path problem in series-parallel multidigraphs with interval data , 2006, Oper. Res. Lett..

[56]  Martin W. P. Savelsbergh,et al.  Robust Optimization for Empty Repositioning Problems , 2009, Oper. Res..

[57]  Peng Sun,et al.  A Linear Decision-Based Approximation Approach to Stochastic Programming , 2008, Oper. Res..

[58]  Michel Minoux,et al.  Robust network optimization under polyhedral demand uncertainty is NP-hard , 2010, Discret. Appl. Math..

[59]  Michael Zibulevsky,et al.  Penalty/Barrier Multiplier Methods for Convex Programming Problems , 1997, SIAM J. Optim..

[60]  Gang Yu,et al.  On the robust shortest path problem , 1998 .

[61]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[62]  Gerhard J. Woeginger,et al.  On the robust assignment problem under a fixed number of cost scenarios , 2006, Oper. Res. Lett..

[63]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[64]  Bernard Roy,et al.  Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..

[65]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[66]  Boaz Golany,et al.  Supplier-Retailer Flexible Commitments Contracts : A Robust Optimization Approach , 2003 .

[67]  Jerzy A. Filar,et al.  Uncertainty and Environmental Decision Making , 2010 .

[68]  Hande Yaman,et al.  The robust spanning tree problem with interval data , 2001, Oper. Res. Lett..

[69]  Hanif D. Sherali,et al.  A finitely convergent algorithm for bilinear programming problems using polar cuts and disjunctive face cuts , 1980, Math. Program..

[70]  Cécile Murat,et al.  Best and Worst Optimum for Linear Programs with Interval Right Hand Sides , 2008, MCO.

[71]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[72]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[73]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[74]  Francisco E. Torres Linearization of mixed-integer products , 1991, Math. Program..

[75]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[76]  Michel Minoux Models and Algorithms for Robust PERT Scheduling with Time-Dependent Task Durations , 2007 .

[77]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .