Ornstein–Uhlenbeck type processes with non-normal distribution
暂无分享,去创建一个
[1] G. P. Bhattacharjee,et al. The Incomplete Gamma Integral , 1970 .
[2] O. Barndorff-Nielsen,et al. Models for non-Gaussian variation, with applications to turbulence , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[3] L. Rogers. Smooth Transition Densities for One‐Dimensional Diffusions , 1985 .
[4] O. E. Barndorff-Nielsen,et al. Parametric modelling of turbulence , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[5] F. Palm. 7 GARCH models of volatility , 1996 .
[6] A. Skorokhod. Asymptotic Methods in the Theory of Stochastic Differential Equations , 2008 .
[7] Tim Bollerslev,et al. Chapter 49 Arch models , 1994 .
[8] P. Sen,et al. Theory of rank tests , 1969 .
[9] A. Harvey,et al. 5 Stochastic volatility , 1996 .
[10] Tina Hviid Rydberg. The normal inverse gaussian lévy process: simulation and approximation , 1997 .
[11] Michael M. Sørensen,et al. A hyperbolic diffusion model for stock prices , 1996, Finance Stochastics.
[12] M. Rubinstein.,et al. Recovering Probability Distributions from Option Prices , 1996 .
[13] O. Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[14] G. P. Bhattacharjee,et al. Algorithm AS 63: The Incomplete Beta Integral , 1973 .
[15] E. Eberlein,et al. Hyperbolic distributions in finance , 1995 .
[16] E. Eberlein,et al. New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .
[17] J. Pitman,et al. A decomposition of Bessel Bridges , 1982 .
[18] M. Rubinstein.. Implied Binomial Trees , 1994 .