Ornstein–Uhlenbeck type processes with non-normal distribution

We analyse a class of diffusion models that (i) allows an explicit expression for the likelihood function of discrete time observation, (ii) allows the possibility of heavy-tailed observations, and (iii) allows an analysis of the tails of the increments. The class simply consists of transformed Omstein-Uhlenbeck processes and is of relevance for heavy-tailed time series. We also treat the question of the existence of an equivalent martingale measure for the class of models considered.

[1]  G. P. Bhattacharjee,et al.  The Incomplete Gamma Integral , 1970 .

[2]  O. Barndorff-Nielsen,et al.  Models for non-Gaussian variation, with applications to turbulence , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  L. Rogers Smooth Transition Densities for One‐Dimensional Diffusions , 1985 .

[4]  O. E. Barndorff-Nielsen,et al.  Parametric modelling of turbulence , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[5]  F. Palm 7 GARCH models of volatility , 1996 .

[6]  A. Skorokhod Asymptotic Methods in the Theory of Stochastic Differential Equations , 2008 .

[7]  Tim Bollerslev,et al.  Chapter 49 Arch models , 1994 .

[8]  P. Sen,et al.  Theory of rank tests , 1969 .

[9]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[10]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[11]  Michael M. Sørensen,et al.  A hyperbolic diffusion model for stock prices , 1996, Finance Stochastics.

[12]  M. Rubinstein.,et al.  Recovering Probability Distributions from Option Prices , 1996 .

[13]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  G. P. Bhattacharjee,et al.  Algorithm AS 63: The Incomplete Beta Integral , 1973 .

[15]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[16]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[17]  J. Pitman,et al.  A decomposition of Bessel Bridges , 1982 .

[18]  M. Rubinstein. Implied Binomial Trees , 1994 .