Towards K-Ion and Na-Ion Batteries as "Beyond Li-Ion".

Li-ion battery commercialized by Sony in 1991 has the highest energy-density among practical rechargeable batteries and is widely used in electronic devices, electric vehicles, and stationary energy storage system in the world. Moreover, the battery market is rapidly growing in the world and further fast-growing is expected. With expansion of the demand and applications, price of lithium and cobalt resources is increasing. We are, therefore, motivated to study Na- and K-ion batteries for stationary energy storage system because of much abundant Na and K resources and the wide distribution in the world. In this account, we review developments of Na- and K-ion batteries with mainly introducing our previous and present researches in comparison to that of Li-ion battery.

[1]  G. H. Newman,et al.  Ambient Temperature Cycling of an Na ‐ TiS2 Cell , 1980 .

[2]  D. Aurbach,et al.  Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions , 2001 .

[3]  S. Komaba,et al.  A New Polymorph of Layered LiCoO2 , 2009 .

[4]  W. Klemm,et al.  Das Verhalten der Alkalimetalle zu Halbmetallen. XI. Die Kristallstruktur von NaSi und NaGe , 1964 .

[5]  K. Kubota,et al.  KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. , 2017, Chemical communications.

[6]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[7]  Yuki Yamada,et al.  A superconcentrated ether electrolyte for fast-charging Li-ion batteries. , 2013, Chemical communications.

[8]  Jun Liu,et al.  Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for High‐Efficiency Sodium Ion Storage , 2017 .

[9]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[10]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[11]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[12]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[13]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[14]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[15]  Yuesheng Wang,et al.  P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries , 2015, Nature Communications.

[16]  K. Kubota,et al.  Synthesis of hard carbon from argan shells for Na-ion batteries , 2017 .

[17]  Laurence Croguennec,et al.  On the metastable O2-type LiCoO2 , 2001 .

[18]  Hiroaki Yoshida,et al.  Understanding the Structural Evolution and Redox Mechanism of a NaFeO2–NaCoO2 Solid Solution for Sodium‐Ion Batteries , 2016 .

[19]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[20]  Y. Moritomo,et al.  Thin Film Electrode of Prussian Blue Analogue for Li-ion Battery , 2011 .

[21]  Denis Billaud,et al.  Electrochemical insertion of sodium into hard carbons , 2002 .

[22]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[23]  K. Kubota,et al.  Study of electrochemical alkali insertion into carbonaceous materials , 2014, 2014 International Renewable and Sustainable Energy Conference (IRSEC).

[24]  Xin Li,et al.  Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. , 2014, Nature materials.

[25]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[26]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[27]  H. Groult,et al.  Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries , 2009 .

[28]  Tengfei Zhou,et al.  Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries , 2017 .

[29]  P. Bruce,et al.  Review-Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials , 2015 .

[30]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[31]  Motoaki Nishijima,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[32]  Y. Marcus Transfer of ions between solvents: Some new results concerning volumes, heat capacities and other quantities , 1996 .

[33]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[34]  Philippe Poggi,et al.  Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry , 2012 .

[35]  J. Sangster K−Si (Potassium-Silicon) system , 2006 .

[36]  J. Dahn,et al.  Li-insertion in hard carbon anode materials for Li-ion batteries , 1999 .

[37]  Oliver Pecher,et al.  Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. , 2016, Chemical communications.

[38]  H. Sakaebe,et al.  Lithium intercalation behavior of iron cyanometallates , 1999 .

[39]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[40]  C. Delmas,et al.  Synthesis and Investigations on an O4-LiCoO2 Polytype , 2009 .

[41]  G. Ceder,et al.  K‐Ion Batteries Based on a P2‐Type K0.6CoO2 Cathode , 2017 .

[42]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[43]  C. Delmas,et al.  The nasicon-type titanium phosphates Ati2(PO4)3 (A=Li, Na) as electrode materials , 1988 .

[44]  Ya‐Xia Yin,et al.  Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries , 2014, Nano Research.

[45]  Gerbrand Ceder,et al.  Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides , 2014 .

[46]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[47]  M. Okubo,et al.  Switching Redox-Active Sites by Valence Tautomerism in Prussian Blue Analogues AxMny[Fe(CN)6]·nH2O (A: K, Rb): Robust Frameworks for Reversible Li Storage , 2010 .

[48]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[49]  J. Goodenough,et al.  Solid-Solution Oxides for Storage-Battery Electrodes , 1980 .

[50]  G. Ceder,et al.  Investigation of Potassium Storage in Layered P3‐Type K0.5MnO2 Cathode , 2017, Advanced materials.

[51]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[52]  L. Luo,et al.  Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode , 2017 .

[53]  K. Kubota,et al.  Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes , 2016 .

[54]  Wei Zhang,et al.  Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction , 2012, Scientific Reports.

[55]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[56]  A. Karyakin,et al.  Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications , 2001 .

[57]  Brett Graeme Ammundsen,et al.  Novel Lithium‐Ion Cathode Materials Based on Layered Manganese Oxides , 2001 .

[58]  A. Mukhopadhyay,et al.  Insights into Electrochemical Behavior, Phase Evolution and Stability of Sn upon K-alloying/de-alloying via In Situ Studies , 2017 .

[59]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[60]  E. Busmann Das Verhalten der Alkalimetalle zu Halbmetallen. X. Die Kristallstrukturen von KSi, RbSi, CsSi, KGe, RbGe und CsGe , 1961 .

[61]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[62]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.

[63]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[64]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[65]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[66]  Xiulei Ji,et al.  New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. , 2015, Nano letters.

[67]  Zhixin Chen,et al.  Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. , 2017, Journal of the American Chemical Society.

[68]  Jun Lu,et al.  High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by POx Doping , 2016 .

[69]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[70]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[71]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[72]  M. Whittingham,et al.  The lithium intercalates of the transition metal dichalcogenides , 1975 .

[73]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[74]  K. Kubota,et al.  Sodium and Manganese Stoichiometry of P2-Type Na2/3 MnO2. , 2016, Angewandte Chemie.

[75]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[76]  Ricardo Alcántara,et al.  Carbon black: a promising electrode material for sodium-ion batteries , 2001 .

[77]  C. Delmas,et al.  Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2 , 2010 .

[78]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[79]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[80]  S. Komaba,et al.  A comparative study of LiCoO2 polymorphs: structural and electrochemical characterization of O2-, O3-, and O4-type phases. , 2013, Inorganic chemistry.

[81]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[82]  P. Hagenmuller,et al.  A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction , 1982 .

[83]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[84]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[85]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[86]  Yuki Yamada,et al.  Superconcentrated Electrolytes to Create New Interfacial Chemistry in Non-aqueous and Aqueous Rechargeable Batteries , 2017 .

[87]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[88]  S. Komaba,et al.  Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media , 2010 .

[89]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[90]  Meng Huang,et al.  Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. , 2017, Nano letters.

[91]  M. Jansen,et al.  Darstellung und Kristallstruktur von Na2Mn3O7 , 1985 .

[92]  H. Morito,et al.  Na–Si binary phase diagram and solution growth of silicon crystals , 2009 .

[93]  Xiulei Ji,et al.  Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities , 2017 .

[94]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[95]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[96]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[97]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[98]  M. Morita,et al.  Behavior of Some Ions in Mixed Organic Electrolytes of High Energy Density Batteries , 1981 .

[99]  P. Hagenmuller,et al.  Evolution structurale et proprietes physiques des phases AXMO2 (A = Na, K; M = Cr, Mn, Co) (x ⩽ 1) , 1975 .

[100]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[101]  Xinping Ai,et al.  High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg , 2013 .

[102]  K. Kubota,et al.  Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries , 2014 .

[103]  Ricardo Alcántara,et al.  Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries , 2005 .

[104]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[105]  M. Dahbi,et al.  Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries , 2016 .

[106]  K. Kubota,et al.  Effect of Hexafluorophosphate and Fluoroethylene Carbonate on Electrochemical Performance and the Surface Layer of Hard Carbon for Sodium-Ion Batteries , 2016 .

[107]  J. Dahn,et al.  Layered LiCoO2 with a Different Oxygen Stacking (O2 Structure) as a Cathode Material for Rechargeable Lithium Batteries , 2000 .

[108]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[109]  M. Dahbi,et al.  Impact of the Cut-Off Voltage on Cyclability and Passive Interphase of Sn-Polyacrylate Composite Electrodes for Sodium-Ion Batteries , 2016 .

[110]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[111]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[112]  B. D. Pollard,et al.  The solubility of alkali-metal fluorides in non-aqueous solvents with and without crown ethers, as determined by flame emission spectrometry. , 1984, Talanta.

[113]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[114]  Yuki Yamada,et al.  Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes , 2015 .

[115]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[116]  Jin Han,et al.  Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. , 2016, Chemical communications.

[117]  Changsong Dai,et al.  Purification and Characterization of Reclaimed Electrolytes from Spent Lithium-Ion Batteries , 2017 .

[118]  Linda F. Nazar,et al.  Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries , 2017 .

[119]  P. Hagenmuller,et al.  Comportement electrochimique des phases NaxCoO2 , 1980 .

[120]  Jiangwei Wang,et al.  Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries , 2017 .

[121]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[122]  W. Klemm,et al.  Die Struktur der AB‐Verbindungen der schweren Alkalimetalle mit Zinn und Blei , 1964 .

[123]  J. Tarascon,et al.  Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes , 2012 .

[124]  N. Sharma,et al.  An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries , 2017 .

[125]  J. Tarascon,et al.  Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. , 2013, Journal of the American Chemical Society.

[126]  P. Prosini,et al.  Sodium extraction from sodium iron phosphate with a Maricite structure , 2014 .

[127]  T. Ohsaki,et al.  The Impedance of Lithium Electrodes in LiPF6 ‐ Based Electrolytes , 1992 .

[128]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[129]  T. Abe,et al.  Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes , 2005 .

[130]  K. Kubota,et al.  P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. , 2017, Chemical communications.

[131]  J. Vittal,et al.  Multiphoton harvesting metal–organic frameworks , 2015, Nature Communications.

[132]  C. Ling,et al.  First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius , 2013 .

[133]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .