Vortex Tracking in Scale-Space

Scale-space techniques have become popular in computer vision for their capability to access the multiscale information inherently contained in images. We show that the field of flow visualization can benefit from these techniques, too, yielding more coherent features and sorting out numerical artifacts as well as irrelevant large-scale features. We describe an implementation of scale-space computation using finite elements and show that performance is sufficient for computing a scale-space of time-dependent CFD data. Feature tracking, if available, allows to process the information provided by scale-space not just visually but also algorithmically. We present a technique for extending a class of feature extraction schemes by an additional dimension, resulting in an efficient solution of the tracking problem.

[1]  Hans Hagen,et al.  Vector and Tensor Field Topology Simplification on Irregular Grids , 2001, VisSym.

[2]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Hans J. W. Spoelder,et al.  Attribute-Based Feature Tracking , 1999 .

[4]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[5]  Rüdiger Westermann,et al.  A Multiscale Approach to Integrated Volume Segmentation and Rendering , 1997, Comput. Graph. Forum.

[6]  W. D. Leeuw,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999 .

[7]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[8]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[9]  Thomas Ertl,et al.  Combining Wavelet Transform and Graph Theory for Feature Extraction and Visualization , 1997, Visualization in Scientific Computing.

[10]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[11]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[12]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[13]  Pak Chung Wong,et al.  Vector fields simplification-a case study of visualizing climate modeling and simulation data sets , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[14]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[15]  Hans J. W. Spoelder,et al.  Attribute-Based Feature Tracking , 1999, VisSym.

[16]  H. Miura,et al.  Identification of Tubular Vortices in Turbulence , 1997 .

[17]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[18]  O C Zienkiewicz,et al.  The finite element method, fourth edition; volume 1: basic formulation and linear problems , 1994 .

[19]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[20]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[21]  David N. Kenwright,et al.  Automatic detection of open and closed separation and attachment lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[22]  Martin Rumpf,et al.  Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces , 2000, IEEE Trans. Vis. Comput. Graph..

[23]  Xin Wang,et al.  Volume tracking , 1996, Proceedings of Seventh Annual IEEE Visualization '96.