Tunable two-phonon higher-order sideband amplification in a quadratically coupled optomechanical system

[1]  M. S. Zubairy,et al.  Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system , 2017 .

[2]  A. Eckardt,et al.  Colloquium: Atomic quantum gases in periodically driven optical lattices , 2016, 1606.08041.

[3]  Hao Xiong,et al.  Radiation pressure induced difference-sideband generation beyond linearized description , 2016, 1610.02664.

[4]  Ying Wu,et al.  Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency , 2016 .

[5]  Ying Wu,et al.  Giant enhancement of optical high-order sideband generation and their control in a dimer of two cavities with gain and loss , 2016 .

[6]  A. Clerk,et al.  Optomechanics with two-phonon driving , 2016, 1605.09275.

[7]  P. Degenfeld-Schonburg,et al.  Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States. , 2016, Physical review letters.

[8]  H. Lu,et al.  Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay , 2016, 1602.05308.

[9]  Eric G. Brown,et al.  Nonlinear dynamics of an optomechanical system with a coherent mechanical pump: Second-order sideband generation , 2015 .

[10]  Da-hai Xu,et al.  Mechanical cooling in single-photon optomechanics with quadratic nonlinearity , 2015 .

[11]  Ying Wu,et al.  PT-Symmetry-Breaking Chaos in Optomechanics. , 2015, Physical review letters.

[12]  Xun-Wei Xu,et al.  Controllable optical output fields from an optomechanical system with mechanical driving , 2015, 1504.08069.

[13]  Hao Xiong,et al.  Formation and manipulation of optomechanical chaos via a bichromatic driving , 2014 .

[14]  Ying Wu,et al.  Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime , 2014 .

[15]  Franco Nori,et al.  PT-symmetric phonon laser. , 2014, Physical review letters.

[16]  G. Agarwal,et al.  Robust stationary mechanical squeezing in a kicked quadratic optomechanical system , 2013, 1309.5485.

[17]  Amit Vainsencher,et al.  Nanomechanical coupling between microwave and optical photons , 2013, Nature Physics.

[18]  P. Meystre,et al.  Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation , 2013 .

[19]  K. Qu,et al.  Fano resonances and their control in optomechanics , 2013, 1304.0389.

[20]  Hao Xiong,et al.  Carrier-envelope phase-dependent effect of high-order sideband generation in ultrafast driven optomechanical system. , 2013, Optics letters.

[21]  P. Tombesi,et al.  Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[22]  Hao Xiong,et al.  Higher-order sidebands in optomechanically induced transparency , 2012 .

[23]  M. Vanner Selective Linear or Quadratic Optomechanical Coupling via Measurement , 2011, 1106.0763.

[24]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[25]  G. Agarwal,et al.  Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes , 2010, 1010.0757.

[26]  Q. Gong,et al.  Asymmetric Fano resonance analysis in indirectly coupled microresonators , 2010 .

[27]  M. Leskes,et al.  Floquet theory in solid-state nuclear magnetic resonance. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[28]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[29]  S. Girvin,et al.  Cooling and squeezing via quadratic optomechanical coupling , 2010, 1004.2510.

[30]  J. Sankey,et al.  Strong and tunable nonlinear optomechanical coupling in a low-loss system , 2010, 1002.4158.

[31]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[32]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[33]  M. Scully,et al.  Electromagnetically induced transparency controlled by a microwave field , 2009, 0903.1457.

[34]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[35]  A. M. Jayich,et al.  Dispersive optomechanics: a membrane inside a cavity , 2008, 0805.3723.

[36]  T. Kippenberg,et al.  Parametric normal-mode splitting in cavity optomechanics. , 2008, Physical review letters.

[37]  P. Meystre,et al.  Optomechanical trapping and cooling of partially reflective mirrors , 2007, 0708.4078.

[38]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[39]  P. Meystre,et al.  Trapping and cooling a mirror to its quantum mechanical ground state. , 2007, Physical review letters.

[40]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[41]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[42]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[43]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[44]  Yuri S. Kivshar,et al.  Solitons in photonic crystals , 2003 .

[45]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[46]  Ying Wu Quantum theory of microcavity-modified fluorescence decay rate under a strong coupling condition , 2000 .

[47]  Ying Wu,et al.  LASING THRESHOLD FOR WHISPERING-GALLERY-MODE MICROSPHERE LASERS , 1999 .

[48]  P. Leung,et al.  Theory of microcavity-enhanced Raman gain. , 1999, Optics letters.

[49]  Zhi‐zhan Xu,et al.  Lasing without inversion and inversion without lasing in the same energy-level system , 1992 .

[50]  Gavrielides,et al.  Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing. , 1989, Physical review letters.