Metabolic potential of lithifying cyanobacteria-dominated thrombolitic mats

[1]  J. Bernhard,et al.  Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas , 2013, Geobiology.

[2]  Robert A. Edwards,et al.  Multivariate Analysis of Functional Metagenomes , 2013, Front. Genet..

[3]  S. Tringe,et al.  Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics , 2012, The ISME Journal.

[4]  M. Breitbart,et al.  Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. , 2012, Astrobiology.

[5]  L. Segovia,et al.  Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin I: ancient lessons on how to cope with an environment under severe nutrient stress. , 2012, Astrobiology.

[6]  N. Kyrpides,et al.  The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools , 2012, BMC Bioinformatics.

[7]  Andreas Wilke,et al.  The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools , 2012, BMC Bioinformatics.

[8]  J. Foster,et al.  Metagenomic and Metabolic Profiling of Nonlithifying and Lithifying Stromatolitic Mats of Highborne Cay, The Bahamas , 2012, PloS one.

[9]  C. Kuske,et al.  Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study. , 2012, Environmental microbiology reports.

[10]  G. Helms,et al.  Photosynthesis versus Exopolymer Degradation in the Formation of Microbialites on the Atoll of Kiritimati, Republic of Kiribati, Central Pacific , 2012 .

[11]  D. Moreira,et al.  Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico) , 2011, PloS one.

[12]  William E. Newton,et al.  Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria , 2010, Microbiology and Molecular Biology Reviews.

[13]  Patrick J. Biggs,et al.  SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data , 2010, BMC Bioinformatics.

[14]  R. Reid,et al.  Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas , 2010, Geobiology.

[15]  J. Antón,et al.  Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. , 2010, Systematic and applied microbiology.

[16]  Patricia P. Chan,et al.  Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea , 2010, Proceedings of the National Academy of Sciences.

[17]  R. Reid,et al.  Formation and diagenesis of modern marine calcified cyanobacteria , 2009, Geobiology.

[18]  Tracy K. Teal,et al.  Systematic artifacts in metagenomes from complex microbial communities , 2009, The ISME Journal.

[19]  R. Reid,et al.  Processes of carbonate precipitation in modern microbial mats , 2009 .

[20]  N. Pace,et al.  Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. , 2009, Environmental microbiology.

[21]  A. Decho,et al.  Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay , 2009, The ISME Journal.

[22]  Peer Bork,et al.  Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat , 2008, Molecular systems biology.

[23]  Florent E. Angly,et al.  Biodiversity and biogeography of phages in modern stromatolites and thrombolites , 2008, Nature.

[24]  Natalia Khuri,et al.  Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses , 2007, The ISME Journal.

[25]  Olivier Braissant,et al.  Exopolymeric substances of sulfate‐reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals , 2007 .

[26]  F. Bushman,et al.  Short pyrosequencing reads suffice for accurate microbial community analysis , 2007, Nucleic acids research.

[27]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[28]  D. M. Ward,et al.  Impact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA). , 2007, Environmental microbiology.

[29]  R. Reid,et al.  Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites , 2006 .

[30]  R. Reid,et al.  Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries , 2006 .

[31]  R. Reid,et al.  Growth morphologies of modern marine stromatolites: A case study from Highborne Cay, Bahamas , 2006 .

[32]  P. Visscher,et al.  Microbial lithification in marine stromatolites and hypersaline mats. , 2005, Trends in microbiology.

[33]  P. Visscher,et al.  Microbial mats as bioreactors: populations, processes, and products , 2005 .

[34]  M. Allen,et al.  Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. , 2004, Environmental microbiology.

[35]  H. Paerl,et al.  Bacterially mediated precipitation in marine stromatolites. , 2001, Environmental microbiology.

[36]  R. Reid,et al.  Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites , 2000 .

[37]  R. Reid,et al.  The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites , 2000 .

[38]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[39]  A. Decho Microbial biofilms in intertidal systems: an overview , 2000 .

[40]  A. Decho,et al.  Biochemical Characterization of Cyanobacterial Extracellular Polymers (EPS) from Modern Marine Stromatolites (Bahamas) , 2000, Preparative biochemistry & biotechnology.

[41]  John,et al.  Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling , 1998 .

[42]  J. W. Peters,et al.  Hydrogenases, Nitrogenases, Anoxia, and H 2 Production in Water-Oxidizing Phototrophs , 2013 .

[43]  P. Visscher,et al.  Phosphate-Related Artifacts In Carbonate Mineralization Experiments , 2013 .

[44]  J. Foster,et al.  Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. , 2012, Environmental microbiology.

[45]  J. Foster,et al.  Microbial Diversity in Modern Stromatolites , 2011 .

[46]  J. Seckbach,et al.  Cellular Origin , Life in Extreme Habitats and Astrobiology , 2010 .

[47]  Forest Rohwer,et al.  Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. , 2009, Environmental microbiology.

[48]  N. Planavsky,et al.  Taphonomy of Modern Marine Bahamian Microbialites , 2009 .

[49]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[50]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data , 2007 .

[51]  M. Allen,et al.  Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats , 2006, Extremophiles.

[52]  H. Paerl,et al.  Ecophysiology of stromatolitic microbial mats, Stocking Island, exuma cays, Bahamas , 2004, Microbial Ecology.

[53]  H. Paerl,et al.  Diazotrophy in Modern Marine Bahamian Stromatolites , 2000, Microbial Ecology.

[54]  A. Knoll,et al.  Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? , 1999, Annual review of earth and planetary sciences.

[55]  A. Decho,et al.  Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes , 1990 .

[56]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[57]  Article number: 2006.0004 , 2022 .