BIOLOGICAL EFFECTS ON THE SOURCE OF GEONEUTRINOS

Detection of antineutrinos from U and Th series decay within the Earth (geoneutrinos) constrains the absolute abundance of these elements. Marine detectors will measure the ratio over the mantle beneath the site and provide spatial averaging. The measured mantle Th/U may well be significantly below its bulk earth value of ~4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine sediments and subducted upper oceanic crust. That is, U subducts preferentially relative to Th. Oxygen ultimately from photosynthesis oxidizes U(IV) to U(VI), which is soluble during weathering and sediment transport. Dissolved U(VI) reacts with FeO in the oceanic crust and organic carbon within sediments to become immobile U(IV). These deep marine rocks are preferentially subducted relative to Th(IV)-bearing continental margin rocks. Ferric iron from anoxygenic photosynthesis and oxygen in local oases likely mobilized some U during the Archean Era when there was very little O2 in the air. Conversely, these elements behave similarly in the absence of life, where the elements occur as U(IV) and Th(IV), which do not significantly fractionate during igneous processes. Neither do they fractionate during weathering, as they are essentially insoluble in water in surface environments. Th(IV) and U(IV) remain in solid clay-sized material. Overall, geoneutrino data constrain the masses of mantle chemical and isotopic domains recognized by studies of mantle-derived rocks and show the extent of recycling into the mantle over geological time.

[1]  C. Spandler,et al.  Element recycling from subducting slabs to arc crust: A review , 2013 .

[2]  M. Whitehouse,et al.  Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust , 2013, Nature.

[3]  K. Maher,et al.  Environmental speciation of actinides. , 2013, Inorganic chemistry.

[4]  Y. Oki,et al.  Reactor On-Off Antineutrino Measurement with KamLAND , 2013 .

[5]  L. Cadonati,et al.  Measurement of geo-neutrinos from 1353 days of Borexino , 2013, 1303.2571.

[6]  D. Zhao,et al.  Global mantle heterogeneity and its influence on teleseismic regional tomography , 2013 .

[7]  S. Mojzsis,et al.  Chemical sedimentary protoliths in the > 3.75 Ga Nuvvuagittuq Supracrustal Belt (Québec, Canada) , 2013 .

[8]  B. McElroy,et al.  Research Online Research Online Earth is (mostly) flat: apportionment of the flux of continental sediment Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales: REPLY over millennial time scales: REPLY , 2017 .

[9]  V. Bonnefoy,et al.  Insight into the evolution of the iron oxidation pathways. , 2013, Biochimica et biophysica acta.

[10]  W. McDonough,et al.  A reference Earth model for the heat‐producing elements and associated geoneutrino flux , 2013, 1301.0365.

[11]  J. Kirschvink,et al.  Manganese-oxidizing photosynthesis before the rise of cyanobacteria , 2012, Proceedings of the National Academy of Sciences.

[12]  P. Cartigny,et al.  Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond , 2012 .

[13]  M. Ćuk,et al.  Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning , 2012, Science.

[14]  R. Canup Forming a Moon with an Earth-like Composition via a Giant Impact , 2012, Science.

[15]  A. Stracke Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle , 2012 .

[16]  C. Herzberg,et al.  Formation of cratonic lithosphere: An integrated thermal and petrological model , 2012 .

[17]  J. Prytulak,et al.  Combined 238U–230Th and 235U–231Pa constraints on the transport of slab-derived material beneath the Mariana Islands , 2012 .

[18]  N. Tolich Geo-neutrino review , 2012 .

[19]  W. McDonough,et al.  Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle , 2012, 1207.0853.

[20]  A. Coe,et al.  Seawater oxygenation during the Paleocene-Eocene Thermal Maximum , 2012 .

[21]  C. Hillaire‐Marcel,et al.  Environmental and seasonal controls on riverine dissolved uranium in the Hudson, James, and Ungava bays region, Canada , 2012 .

[22]  M. Wadhwa,et al.  Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System , 2012, Proceedings of the National Academy of Sciences.

[23]  N. Sleep,et al.  Paleontology of Earth's Mantle , 2012 .

[24]  S. Noble,et al.  238U/235U Systematics in Terrestrial Uranium-Bearing Minerals , 2012, Science.

[25]  C. Jaupart,et al.  Geoneutrinos and the energy budget of the Earth , 2012 .

[26]  K. Buesseler,et al.  Re-evaluating the 238U-salinity relationship in seawater: Implications for the 238U–234Th disequilibrium method , 2011 .

[27]  A. Steele,et al.  Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions , 2011, Science.

[28]  M. Fayek,et al.  THE WORLD’S OLDEST OBSERVED PRIMARY URANINITE , 2011 .

[29]  D. Bradley Secular trends in the geologic record and the supercontinent cycle , 2011 .

[30]  O. Perevozchikov,et al.  Partial radiogenic heat model for Earth revealed by geoneutrino measurements , 2011 .

[31]  C. Class,et al.  South Atlantic DUPAL anomaly — Dynamic and compositional evidence against a recent shallow origin , 2011 .

[32]  M. Brasier,et al.  Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments , 2011 .

[33]  F. Albarède,et al.  The Solar System primordial lead , 2010 .

[34]  T. M. Harrison,et al.  Constraints on Hadean geodynamics from mineral inclusions in > 4 Ga zircons , 2010 .

[35]  Aleksandar Cvetkovic,et al.  Microbial metalloproteomes are largely uncharacterized , 2010, Nature.

[36]  B. Griffin,et al.  Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17. , 2010, Microbiology.

[37]  N. Sleep The Hadean-Archaean environment. , 2010, Cold Spring Harbor perspectives in biology.

[38]  M. Cuney Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types , 2010 .

[39]  C. Herzberg,et al.  Thermal history of the Earth and its petrological expression , 2010 .

[40]  D. Clague,et al.  Spotlight: Lō`ihi Seamount , 2010 .

[41]  R. Wirth,et al.  Ammonium-bearing clinopyroxene: A potential nitrogen reservoir in the Earth's mantle , 2010 .

[42]  D. Papineau Mineral Environments on the Earliest Earth , 2010 .

[43]  P. Sánchez‐Baracaldo,et al.  Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen , 2010, Geobiology.

[44]  D. F. D. Vries,et al.  Combined C isotope and geochemical evidence for a recycled origin for diamondiferous eclogite xenoliths from kimberlites of Yakutia , 2009 .

[45]  C. Jaupart,et al.  Enhanced crustal geo-neutrino production near the Sudbury Neutrino Observatory, Ontario, Canada , 2009 .

[46]  R. Wirth,et al.  Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas , 2009, Mineralogical Magazine.

[47]  A. Bekker,et al.  Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis , 2009 .

[48]  R. Wirth,et al.  Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil , 2009 .

[49]  A. Bekker,et al.  Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater , 2009 .

[50]  T. Harrison,et al.  The Hadean Crust: Evidence from >4 Ga Zircons , 2009 .

[51]  Kentaro Nakamura,et al.  Hematite formation by oxygenated groundwater more than 2.76 billion years ago , 2009 .

[52]  S. Hedges,et al.  A major clade of prokaryotes with ancient adaptations to life on land. , 2009, Molecular biology and evolution.

[53]  W. Heinrich,et al.  High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth’s mantle , 2009 .

[54]  B. Velde,et al.  Long‐Term Fertilization Influences on Clay Mineral Composition and Ammonium Adsorption in a Rice Paddy Soil , 2008 .

[55]  Norman H Sleep,et al.  Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  M. Madigan,et al.  Arsenic(III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California , 2008, Science.

[57]  C. Langmuir,et al.  Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle , 2008, Nature.

[58]  E. Boyle,et al.  Natural fractionation of 238U/235U , 2008 .

[59]  R. O'Connell,et al.  Modeling lead isotopic heterogeneity in mid-ocean ridge basalts , 2007 .

[60]  A. J. Kaufman,et al.  Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry , 2007, Nature.

[61]  A. J. Kaufman,et al.  Late Archean Biospheric Oxygenation and Atmospheric Evolution , 2007, Science.

[62]  Charles S. Cockell,et al.  Emergence of a Habitable Planet , 2007 .

[63]  S. Mojzsis,et al.  Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen , 2007 .

[64]  A. Bekker,et al.  Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA , 2007 .

[65]  I. Kraus,et al.  Particle properties of hydrothermal ammonium-bearing illite-smectite , 2007 .

[66]  D. Butterfield,et al.  Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust , 2006 .

[67]  Yumiko Watanabe,et al.  Sulphur isotope evidence for an oxic Archaean atmosphere , 2006, Nature.

[68]  J. Bargar,et al.  Uranyl adsorption and surface speciation at the imogolite–water interface: Self-consistent spectroscopic and surface complexation models , 2006 .

[69]  W. Glassley,et al.  The rise of continents¿An essay on the geologic consequences of photosynthesis , 2006 .

[70]  M. Norman,et al.  Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts , 2006, Nature.

[71]  S. H. Richardson,et al.  Evidence from kimberlitic zircon for a decreasing mantle Th/U since the Archean , 2005 .

[72]  M. Decowski,et al.  Experimental investigation of geologically produced antineutrinos with KamLAND , 2005, Nature.

[73]  Katherine A. Kelley,et al.  Subduction cycling of U, Th, and Pb , 2005 .

[74]  P. Hayman,et al.  Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil) , 2005 .

[75]  B. Marty,et al.  Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks , 2005 .

[76]  Dunyi Liu,et al.  Internal zoning and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism , 2004 .

[77]  T. Algeo Can marine anoxic events draw down the trace element inventory of seawater , 2004 .

[78]  C. Langmuir,et al.  Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics , 2004 .

[79]  B. Marty,et al.  “A large secular variation in the nitrogen isotopic composition of the atmosphere since the Archaean?”: response to a comment on “The nitrogen record of crust mantle interaction and mantle convection from Archaean to Present” by R. Kerrich and Y. Jia , 2004 .

[80]  R. Canup,et al.  Simulations of a late lunar-forming impact , 2004 .

[81]  D. Newman,et al.  Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[82]  M. Rosing,et al.  U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis , 2004 .

[83]  E. M. Klein,et al.  3.13 – Geochemistry of the Igneous Oceanic Crust , 2003 .

[84]  A. Knoll The geological consequences of evolution , 2003 .

[85]  S. de Vries,et al.  Microbial ferric iron reductases. , 2003, FEMS microbiology reviews.

[86]  J. Herndon Nuclear georeactor origin of oceanic basalt 3He/4He, evidence, and implications , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. Ramsay,et al.  Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source , 2003 .

[88]  B. Marty,et al.  The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present , 2003 .

[89]  S. Boyd Ammonium as a biomarker in Precambrian metasediments , 2001 .

[90]  S. V. Baranov,et al.  The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  N. Grassineau,et al.  Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million–year–old rocks of the Belingwe Belt, Zimbabwe , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[92]  C. Bauer,et al.  Molecular evidence for the early evolution of photosynthesis. , 2000, Science.

[93]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[94]  Gillet,et al.  40K-(40)Ar constraints on recycling continental crust into the mantle , 2000, Science.

[95]  Euan G. Nisbet,et al.  Archaean metabolic evolution of microbial mats , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[96]  D. Canfield,et al.  The evolution of the sulfur cycle , 1999 .

[97]  S. Emerson,et al.  The geochemistry of redox sensitive trace metals in sediments , 1999 .

[98]  A. Hall Ammonium in granites and its petrogenetic significance , 1999 .

[99]  C. Lécuyer,et al.  Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth's mantle and atmosphere , 1999 .

[100]  W. McDonough,et al.  The composition of the Earth , 1995 .

[101]  F. Widdel,et al.  Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism , 1994, Applied and environmental microbiology.

[102]  Walter H. F. Smith,et al.  An empirical thermal history of the Earth's upper mantle , 1994 .

[103]  E. Nisbet,et al.  Can diamonds be dead bacteria? , 1994, Nature.

[104]  J. Edmond,et al.  Uranium in river water , 1993 .

[105]  C. Langmuir,et al.  Effects of the melting regime on the composition of the oceanic crust , 1992 .

[106]  M. Fleisher,et al.  Concentration, oxidation state, and particulate flux of uranium in the Black Sea , 1989 .

[107]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[108]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[109]  B. Harte,et al.  Mineral inclusions in diamonds track the evolution of a Mesozoic subducted slab beneath West Gondwanaland , 2012 .

[110]  M. Ginder-Vogel,et al.  Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. , 2010, Environmental science & technology.

[111]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.